【题目】一副三角板的两块三角板的三个角度数分别为90°、60°、30°和90°、45°、45°,我们可以用三角板的角拼出一些特殊度数的角.
(1)两块三角板按如图1所示拼接,则∠BAD的度数是 °.
(2)小明用两块三角板按图2拼出的∠PMN的度数是 °.
(3)小明想画出图2拼出的∠PMN的角平分线,请你只用一副三角板在图3中帮小明完成画图.(不写画法,保留画图痕迹,标出必要的度数)
【答案】(1)15;(2)150;(3)见解析
【解析】
(1)两块三角板按如图1所示拼接,得∠BAD的度数是 45°﹣30°=15°.
(2)两块三角板按图2拼出的∠PMN的度数是90°+60°=150°.
(3)画出图2拼出的∠PMN的角平分线,用一副三角板的45度角加上30度角即可在图3中完成画图.
解:如图所示:
(1)如图1,得:∠BAD= ∠BAC∠DAE=45°﹣30°=15°,
故答案为:15;
(2)如图2,得:∠PMN=∠GMN+∠PMH =90°+60°=150°,
故答案为:150;
(3)由(2)可知∠PMN=150°,
根据角平分线的定义,∠PMN可分为度数都是75°的两个角,
则用一副三角板的45度角加上30度角即可得出75°,
所以用一副三角板的45度角加上30度角即可在图3中完成画图.
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠C=90,BC=6,AC=8.动点M从点B开始沿边BC向点C以每秒1个单位长度的速度运动,动点N从点C开始沿边CA向点A以每秒2个单位长度的速度运动,点M、N同时出发,且当其中一点到达端点时,另一点也随之停止运动.过点M作MD∥AC,交AB于点D,连接MN.设运动时间为t秒(t≥0).
(1)当t为何值时,四边形ADMN为平行四边形?
(2)是否存在t的值,使四边形ADMN为菱形?若存在,求出t的值;若不存在,说明理由.并探究只改变点N的速度(匀速运动),使四边形ADMN在某一时刻为菱形,求点N的速度;
(3)如图2,在整个运动过程中,求出线段MN中点P所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直角三角板和直角三角板,,,
.
(1)如图1,将顶点和顶点重合,保持三角板不动,将三角板绕点旋转.当平分时,求的度数;
(2)在(1)的条件下,继续旋转三角板,猜想与有怎样的数量关系?并利用图2所给的情形说明理由;
(3)如图3,将顶点和顶点重合,保持三角板不动,将三角板绕点旋转.当落在内部时,直接写出与的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,則四辺形ABFD的周长为( )
A. 16cmB. 18cmC. 20cmD. 22cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表:
多面体 | 顶点数 | 面数 | 棱数 |
四面体 | 4 | 4 | 6 |
长方体 | 8 | 6 | |
正八面体 | 8 | 12 |
现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.若∠AOD=120°,AC=4,则CD的大小为( )
A.8B.4C.8D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xOy中,已知B(-1,0),一次函数y=-x+5的图象与x轴,y轴分别交于点A,C两点,二次函数y=-x2+bx+c的图象经过点A,点B.
(1)求这个二次函数的解析式;
(2)点P是该二次函数图象的顶点,求△APC的面积;
(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,
(1)写出药物燃烧前后,y与x之间的函数表达式;
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com