精英家教网 > 初中数学 > 题目详情

【题目】如图,BD△ABC的角平分线,点E位于边BC上,已知BDBABE的比例中项.

(1)求证:CDE=ABC;

(2)求证:ADCD=ABCE.

【答案】证明见解析

【解析】试题分析:(1)根据BDABBE的比例中项可得, BD是∠ABC的平分线,则∠ABD=∠DBE,可证△ABD∽△DBE,A=∠BDE. 又因为∠BDC=∠A+∠ABD,

即可证明∠CDE=∠ABD=ABC,(2) 先根据∠CDE=∠CBD,∠C=∠C,可判定

CDE∽△CBD,可得.又△ABD∽△DBE,所以,,所以

.

试题解析:(1)∵BDABBE的比例中项,

,

BD是∠ABC的平分线,则∠ABD=∠DBE,

∴△ABD∽△DBE,

∴∠A=∠BDE.

又∠BDC=∠A+∠ABD,

∴∠CDE=∠ABD=ABC,即证.

(2)∵∠CDE=∠CBD,∠C=∠C,

∴△CDE∽△CBD,

.

又△ABD∽△DBE,

,

,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

【答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<

【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到ba的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;
(2)把点代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得的面积即可;
(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.

试题解析:(1)∵抛物线有一个公共点M(1,0),

a+a+b=0,即b=2a

∴抛物线顶点D的坐标为

(2)∵直线y=2x+m经过点M(1,0),

0=2×1+m,解得m=2,

y=2x2,

(x1)(ax+2a2)=0,

解得x=1

N点坐标为

a<b,即a<2a

a<0,

如图1,设抛物线对称轴交直线于点E

∵抛物线对称轴为

设△DMN的面积为S

(3)a=1时,

抛物线的解析式为:

解得:

G(1,2),

∵点GH关于原点对称,

H(1,2),

设直线GH平移后的解析式为:y=2x+t

x2x+2=2x+t

x2x2+t=0,

=14(t2)=0,

当点H平移后落在抛物线上时,坐标为(1,0),

(1,0)代入y=2x+t

t=2,

∴当线段GH与抛物线有两个不同的公共点,t的取值范围是

型】解答
束】
26

【题目】摇椅是老年人很好的休闲工具,右图是一张摇椅放在客厅的侧面示意图,摇椅静止时,以O为圆心OA为半径的的中点P着地,地面NP与相切,已知AOB=60°,半径OA=60cm,靠背CD与OA的夹角ACD=127°,C为OA的中点,CD=80cm,当摇椅沿滚动至点A着地时是摇椅向后的最大安全角度.

(1)静止时靠背CD的最高点D离地面多高?

(2)静止时着地点P至少离墙壁MN的水平距离是多少时?才能使摇椅向后至最大安全角度时点D不与墙壁MN相碰.

(精确到1cm,参考数据π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36, =1.41, =1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,点DAB的中点,过点DDEBCACE

1)求证:EAC的中点;

2)如图2,过点DQDABBC的延长线于Q,过点EEPACCB的延长线于P,连APAQ.若PQ12AP+AQ20,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列分式方程解应用题:

某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:

信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;

信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.

根据以上信息,原来报名参加的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,EABD内的点,EB=EC

1)如图1,若EB=BC,求∠EBD的度数;

2)如图2ECBD交于点F,连接AE,若,试探究线段FCBE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCD…的规律绕在ABCD的边上,则细线另一端所在位置的点的坐标是( )

A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.

(1)试问坡AB的高BT为多少米?

(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°30°,试求建筑物的高度CH.(精确到米, ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDOOE⊥AB

1)若∠EOD=20°,求∠AOC的度数;

2)若∠AOC∠BOC=12,求∠EOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在矩形ABCD中,AB10BC12,四边形EFGH的三个顶点EFH分别在矩形ABCDABBCDA上,AE2

1)如图,当四边形EFGH为正方形时,求△GFC的面积;

2)如图,当四边形EFGH为菱形,且BFa时,求△GFC的面积(用a表示);

3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.

查看答案和解析>>

同步练习册答案