【题目】如图1,在△ABC中,点D为AB的中点,过点D作DE∥BC交AC于E.
(1)求证:E为AC的中点;
(2)如图2,过点D作QD⊥AB交BC的延长线于Q,过点E作EP⊥AC交CB的延长线于P,连AP、AQ.若PQ=12,AP+AQ=20,求DE的长.
【答案】(1)详见解析;(2)4
【解析】
(1)作CF∥AB交DE的延长线于点F,证明△ADE≌△CFE,根据全等三角形的性质得到AE=CE;
(2)根据线段垂直平分线的性质得到QA=QB,AP=CP,求出BC的长,根据三角形中位线定理解答即可.
(1)证明:作CF∥AB交DE的延长线于点F,
则∠A=∠FCE,
∵DE∥BC,CF∥AB,
∴四边形DBCF为平行四边形,
∴BD=CF,
∵点D为AB的中点,
∴AD=BD,
∴AD=CF,
在△ADE和△CFE中,
,
∴△ADE≌△CFE(ASA),
∴AE=CE,即E为AC的中点;
(2)∵点D为AB的中点,QD⊥AB,
∴QA=QB,
同理,AP=CP,
∴BC=CP+BQ﹣PQ=AP+AQ﹣PQ=20﹣12=8,
∵D、E分别为AB、AC的中点,
∴DE=BC=4
科目:初中数学 来源: 题型:
【题目】彩虹服装店用元购进件衬衣,很快全部售完.服装店老板以每件元的价格为标准,将超出的记为正数,不足的记为负数,记录如下:,,,,,,,(单位:元).他卖完这件衬衣后是盈利还是亏损?盈利(或亏损)了多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=∠COD=90°
(1)∠AOC和∠BOD的大小有什么关系?请说明理由.
(2)若∠BOD=150°,则∠BOC是多少度?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图点A(a,0)在x轴负半轴,点B(b,0)在x轴正半轴,点C(0,c)在y轴正半轴,且.
(1)如图1,求S△ABC;
(2)如图2,若点D(0,5),BD的延长线交AC于E,求∠AEB;
(3)如图3,在(2)的条件下,将线段BA绕点B逆时针旋转90°至线段BF,连接EF,试探究EA,EB,EF之间有怎样的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店经营某种水果,顾客的批发量x(kg)与批发单价y(元/kg)之间的关系如图所示.图中线段AB表示:批发量x每增加1 kg,批发单价y降低0.1元/kg.
(1)求m的值;
(2)已知该水果进价为6元/kg,设该水果店获利w元.
①求w与x的函数表达式;
②当0<x≤m时,求w的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,点E位于边BC上,已知BD是BA与BE的比例中项.
(1)求证:∠CDE=∠ABC;
(2)求证:ADCD=ABCE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线经过点(2,3),对称轴为直线x =1.
(1)求抛物线的表达式;
(2)如果垂直于y轴的直线l与抛物线交于两点A(, ),B(, ),其中, ,与y轴交于点C,求BCAC的值;
(3)将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,原抛物线上一点P平移后对应点为点Q,如果OP=OQ,直接写出点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com