精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AC,EAB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F的度数是(  )

A. 40 B. 70 C. 50 D. 45

【答案】A

【解析】解:以点E为圆心,EB为半径画弧,交BC于点D,∴EB=ED,∴∠EDB=∠B=70°,∴∠BED=180°﹣∠B=∠BDE=40°.

AB=AC,∴∠ACB=∠B,∴∠EDB=∠ACB,∴EFAC

EAB的中点,即BE=AE,∴BD=CD

EBDFCD中,DE=DF,∠EDB=∠CDFBD=CD,∴△EBD≌△FCD(SAS),∴∠F=∠BED=40°.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】不等式3x6的解集是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x2是方程ax4的解,则a的值为(  )

A.2B.2C.4D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,把一块含30°的直角三角板ABCBC边放置于长方形直尺DEFGEF边上.

(1)填空:∠1= °,2= °;

(2)现把三角板绕B点逆时针旋转n°.

①如图2,当0<n<90,且点C恰好落在DG边上时,求∠1、2的度数(结果用含n的代数式表示);

②当0<n<360时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,直接写出所有n的值和对应的那两条垂线;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商厦进货员在苏州发现了一种应季围巾,用8000元购进一批围巾后,发现市场还有较大的需求,又在上海用17600元购进了同一种围巾,数量恰好是在苏州所购数量的2倍,但每条比在苏州购进的多了4问某商厦在苏州、上海分别购买了多少条围巾?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料后解决问题:

小明遇到下面一个问题:

计算(2+1)(22+1)(24+1)(28+1).

经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

请你根据小明解决问题的方法,试着解决以下的问题:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(﹣m,n),B(0,m),且m、n满足+(n﹣5)2=0,点Cy轴上,将ABC沿y轴折叠,使点A落在点D处.

(1)写出D点坐标并求A、D两点间的距离;

(2)若EF平分∠AED,若∠ACF﹣AEF=20°,求∠EFB的度数;

(3)过点CQH平行于ABx轴于点H,点QHC的延长线上,ABx轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点Cy轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且ADx轴,交y轴于M点,ABx轴于N.

(1)求B、D两点坐标和长方形ABCD的面积;

(2)一动点PA出发(不与A点重合),以个单位/秒的速度沿ABB点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、MPO、PON之间的数量关系;

(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到的位置,AB=12cm,DH=4cm,平移的距离是8cm,则阴影面积是________.

查看答案和解析>>

同步练习册答案