【题目】如图,在
中,
,且点
的坐标为
,点
坐标为
,点
在
轴的负半轴上,抛物线
经过点
和点![]()
![]()
求
,
的值;
在抛物线的对称轴上是否存在点
,使得
为等腰三角形?若存在,直接写出点
的坐标;若不存在,请说明理由
点
是线段
上的一个动点,过点
作
轴的平行线交抛物线于点
,交
于点
,探究:当点
在什么位置时,四边形
是平行四边形,此时,请判断四边形
的形状,并说明理由.
【答案】(1)
;(2)符合题意的
点的坐标为:
;
;
;
,
;(3)四边形
是梯形,理由见解析.
【解析】
(1)直接利用待定系数法求出抛物线解析式得出即可;
(2)利用当AQ=QC,以及当AC=Q1C时,当AC=CQ2=2
时,当AQ3=AC=2
时,分别得出符合题意的答案即可;
(3)利用平行四边形的性质首先得出BC的长,进而表示出线段ME的长,进而求出答案,再利用梯形的判定得出答案.
∵点
的坐标为
,点
坐标为
,点
在
轴的负半轴上,抛物线
经过点
和点
,
∴
,
解得:
;
在抛物线的对称轴上存在点
,使得
为等腰三角形,
![]()
当
,如图
,
由
得:
,
即抛物线对称轴为:直线
,则
,
,
∵
,
,
∴
,
∴
,
∴
;
当
时,过点
作
直线
,于一点
,
则
,
∵
,
,
∴
,
∴
,
∴
,故
的坐标为:
;
当
时,由
的坐标可得;
;
当
时,则
,故
,根据对称性可知
(
和
关于
轴对称)也符合题意,
综上所述:符合题意的
点的坐标为:
;
;
;
,
;
![]()
如图
所示,当四边形
是平行四边形,则
,
∵
,且点
的坐标为
,点
坐标为
,
∴
,
则
,
设直线
的解析式为:
,
故
,
解得:
,
故直线
的解析式为:
,
设
,
,
故
,
解得:
(不合题意舍去),
,
故
点在
,此时四边形
是平行四边形;
四边形
是梯形,
理由:∵四边形
是平行四边形,
∴
,
∵
,
,
∴
,
∵
,
,
∴
,
∴
,
∴
是等边三角形,
∵
,
,
∴四边形
是梯形.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线
.下列结论中,正确的是( )
![]()
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先化简,再求值:a(a-2b)+(a+b)2,其中a=-1,b=
;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
【答案】(1)原式= 2a2+b2=2+2=4;(2)原式=4.
【解析】试题分析:(1)利用完全平方公式展开,化简,代入求值. (2) 利用完全平方公式展开,化简,整体代入求值.
解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.
当a=-1,b=
时,原式=2+2=4.
(2)原式=2x2-3x+1-(x2+2x+1)+1=x2-5x+1=3+1=4.
【题型】解答题
【结束】
22
【题目】已知化简(x2+px+8)(x2-3x+q)的结果中不含x2项和x3项.
(1)求p,q的值.
(2)x2-2px+3q是否是完全平方式?如果是,请将其分解因式;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E, F在直线AC上,DF=BE, ∠AFD=∠CEB,下列条件中不能判断△ADF≌△CBE的是( )
![]()
A.∠D=∠BB.AD=CBC.AE=CFD.AD// BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MON=20° ,点A B分别是射线OM、ON上的动点(A、B不与点0重合),若AB
OM,在射线ON上有一点C,设∠OAC=x°,下列x的值不能使△ABC为等腰三角形的是( )
A.20
B.45
C.50
D.125
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,高AD和BE交于点H,∠ABC=45°,BE平分∠ABC,下列结论:①∠DAC= 22.5°;②BH= 2CE; ③若连结CH,则CH⊥AB;④若CD=1,则AH=2;其中正确的有( )
![]()
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:
(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;
(2)请帮用户计算,在一个月内使用哪一种卡便宜.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
![]()
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com