精英家教网 > 初中数学 > 题目详情

【题目】(1)先观察下列等式,再完成题后问题:

①请你猜想:=________.

②若a、b为有理数,且

:+…+的值.

(2)探究并计算:+++…+

(3)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的正方形,再把面积为的正方形等分成两个面积为的矩形.如此进行下去,试利用图形揭示的规律计算:++++++.(直接写答案).

【答案】(1) ;(2);(3) ;(4).

【解析】

(1)①根据题意类比得出=

②先根据非负数的性质得出a、b的值,代入原式变形为1-+-+-…+是解题的关键;

(2)根据乘法分配律提取,先拆项,再抵消即可求解;

(3)由数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.

(1)=

②∵|a-1|+|b-2|=0,

a-1=0, b-2=0,

a=1,b=2;

原式=1-+-+-…+

=1-

=

(2)

=

=×(-)

=

(3)++++++

=1-

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点FCE平分∠BCD,交AD于点EAB=6EF=2,则BC长为( )

A. 10 B. 8 C. 14 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)【证法回顾】证明:三角形中位线定理.

已知:如图1,DE是△ABC的中位线.

求证:   

证明:添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;

请继续完成证明过程:

(2)【问题解决】

如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.

(3)【拓展研究】

如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=,DF=2,∠GEF=90°,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示

销售单价x(元/kg)

70

75

80

85

90

销售量w(kg)

100

90

80

70

60

设该绿茶的月销售利润为y(元)(销售利润=单价×销售量﹣成本﹣投资).
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠ABC的平分线BE交AD边于点E,交对角线AC于点F,若 = ,则 =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一次数学活动课上,小颖用 10 个棱长为 1 的正方体积木搭成一个几何体,然后她请小华用其 他棱长为 1 的正方体积木在旁边再搭一个几何体,使用小华所搭几何体恰好和小颖所搭几何体拼成一个 无空隙的大正方体(不改变小颖所搭几何体的形状).那么:按照小颖的要求搭几何体,小华至少需要_____个正方体积木.按照小颖的要求,小华所搭几何体的表面积最小为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,铁路上A,B两点相距25 km,C,D为两村庄,DAAB于点A,CBAB于点B,已知DA=16 km,CB=11 km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°,AC=60 cm,A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t(0<t≤15).过点DDFBC于点F,连接DE,EF。

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

(3)t为何值时,DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角尺如图拼接:含角的三角尺的长直角边与含角的三角尺的斜边恰好重合已知AC上的一个动点.

当点P运动到的平分线上时,连接DP,求DP的长;

当点P在运动过程中出现时,求此时的度数;

当点P运动到什么位置时,以为顶点的平行四边形的顶点Q恰好在边BC上?求出此时DPBQ的面积.

查看答案和解析>>

同步练习册答案