精英家教网 > 初中数学 > 题目详情

【题目】(1)【证法回顾】证明:三角形中位线定理.

已知:如图1,DE是△ABC的中位线.

求证:   

证明:添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;

请继续完成证明过程:

(2)【问题解决】

如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.

(3)【拓展研究】

如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=,DF=2,∠GEF=90°,求GF的长.

【答案】(1)DE∥BC,DE=BC,证明见解析;(2)5; (3)

【解析】(1)分析:根据三角形的中位线定理填写即可;利用“边角边”证明△ADE和△CFE全等,根据全等三角形对应角相等可得∠A=∠ECF,全等三角形对应边相等可得AD=CF,然后求出四边形BCFD是平行四边形,根据平行四边形的性质证明即可.(2)由,正方形性质及EAD 中点得出△ADE≌△CFE,由全等三角形推出,EF垂直平分GH,从而求解.(3) 过点DAB的平行线交GE的延长线于点H,过HCD的垂线,垂足为P,连接HF,可证明△AEG≌△DEH,结合条件可得到△HPD为等腰直角三角形,可求得PF的长,在Rt△HFP中,可求得HF,则可求得GF的长.

(1)DE∥BC,DE=BC

证明:在△ADE和△CFE中, ,∴△ADE≌△CFE(SAS),

∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,

∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.

(2)如图2,延长GE、FD交于点H,

∵E为AD中点,

∴EA=ED,且∠A=∠EDH=90°,

在△AEG和△DEH中

∴△AEG≌△DEH(ASA),

∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,

∴GF=HF=DH+DF=2+3=5;

(3)如图3,过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,

同(1)可知△AEG≌△DEH,GF=HF,∴∠A=∠HDE=105°,AG=HD=

∵∠ADC=120°,∴∠HDF=360°﹣105°﹣120°=135°,

∴∠HDP=45°,∴△PDH为等腰直角三角形,

∴PD=PH=3,∴PF=PD+DF=3+2=5,

在Rt△HFP中,∠HPF=90°,HP=3,PF=5,

∴HF= == ∴GF=

点睛;本题考查了四边形的综合应用,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质,勾股定理;本题考查知识点较多综合性较强,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算与化简.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.数据收集整理后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:

(1)请通过计算,补全条形统计图;

(2)请直接写出扇形统计图中“享受美食”所对应圆心角的度数为  

(3)根据调查结果,可估计出该校九年级学生中减压方式的众数和中位数分别是    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国际足球比赛对足球的质量有严格的要求,比赛所用足球上标有:430±20(g).请问:

(1)比赛所用足球的标准质量是多少?符合比赛所用足球质量的合格范围是多少?

(2)组委会随机抽查了8只足球的质量,高于标准质量记为正,低于标准质量记为负,结果分别是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求这8只足球质量的合格率.

(足球质量的合格率=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶ah后,途中在加油站加油若干bL.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示.根据图象回答下列问题:

小汽车行驶________h后加油, 中途加油__________L;

求加油前油箱余油量Q与行驶时间t的函数关系式;

如果加油站距景点200km,车速为80km/h,要到达目的

地,油箱中的油是否够用?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3分别交x轴、y轴与CA两点,点Bx轴上一点,且横坐标为2OA上取一点H,使得OH=OB.

1求点C的坐标.

2CH所在直线的表达式.

3 若点P在直线CH上运动,是否存在一点P,使得PBC的面积是AHB面积的,若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)先观察下列等式,再完成题后问题:

①请你猜想:=________.

②若a、b为有理数,且

:+…+的值.

(2)探究并计算:+++…+

(3)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的正方形,再把面积为的正方形等分成两个面积为的矩形.如此进行下去,试利用图形揭示的规律计算:++++++.(直接写答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形。若,AB=2,则图中阴影部分的面积为______.

查看答案和解析>>

同步练习册答案