精英家教网 > 初中数学 > 题目详情

【题目】已知m+n=7,点A(mn)在一个反比例函数的图象上,点A与坐标原点的距离为5,现将这个反比例函数图象绕原点顺时针旋转90o,得到一个新的反比例函数图象,则这个新的反比例函数的解析式是________.

【答案】

【解析】

先利用两点间的距离公式得到m2+n2=52,再把m+n=7两边平方得(m+n2=49,于是可计算出mn=12,根据反比例函数图象上点的坐标特征得到反比例函数解析式为y=,然后根据反比例函数的性质和旋转的性质确定旋转后的反比例函数解析式.

根据题意得m2+n2=52

m+n=7,则(m+n2=49

所以mn=12

设反比例函数解析式为y=

k=mn=12

即反比例函数解析式为y=

把反比例函数y=12x图象绕原点顺时针旋转90°,得到一个新的反比例函数图象,此新的反比例函数解析式为y=-

故答案为y=-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.

(1)求yx之间的函数关系式;

(2)当每箱售价为多少元时,每星期的销售利润达到3570元?

(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.

(1)求甲、乙两种苹果的进价分别是每千克多少元?

(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程 有实数根.

(1)求的取值范围;

(2)若 两个实数根分别为 ,且,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且EDB=C.

(1)求证:ADEDBE

(2)若DE=9cm,AE=12cm,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中ABBC,EFBCAEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣2x经过点P(﹣2a),点P关于y轴的对称点P′在反比例函数yk≠0)的图象上.

1)求反比例函数的解析式;

2)直接写出当y4x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条自南向北的大道上有OA两个景点,OA相距20km,在O处测得另一景点C位于点O的北偏东37°方向,在A处测得景点C位于点A的南偏东76°方向,且A、C相距13km .

(1)求:①A到OC之间的距离;

②O、C两景点之间的距离;

(2)若在O处测得景点B 位于景点O的正东方向10km,求B、C两景点之间的距离.(参考数据:tan37°=0.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=90AC=BC=1EF为线段AB上两动点,且ECF=45°,过点EF分别作BCAC的垂线相交于点M,垂足分别为HG.现有以下结论:AB=当点E与点B重合时,MH=AF+BE=EFMGMH=,其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案