| A. | n(n-1) | B. | n(n+1) | C. | (n+1)(n-1) | D. | n2+2 |
分析 由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.
解答 解:∵等边三角形“扩展”而来的多边形的边数为:
12=3×(3+1),
正方形“扩展”而来的多边形的边数为:
20=4×(4+1),
正五边形“扩展”而来的多边形的边数为:
30=5×(5+1),
正六边形“扩展”而来的多边形的边数为:
42=6×(6+1),
…
∴正n边形“扩展”而来的多边形的边数为:n(n+1).
故选:B.
点评 题主要考查了图形的变化规律,注意观察总结出规律,并能正确应用,解答此题的关键是判断出正n边形“扩展”而来的多边形的边数与n的关系.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1名 | B. | 2名 | C. | 3名 | D. | 4名 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com