精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.

(1)若点D的横坐标为2,求抛物线的函数解析式;

(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;

(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

【答案】(1) y=﹣x2﹣2x+3(2) P的坐标为(﹣4,﹣)和(﹣6,﹣);(3) (1,﹣4).

【解析】

试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.

试题解析:(1)∵y=a(x+3)(x﹣1),

∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),

∵直线y=﹣x+b经过点A,

∴b=﹣3

∴y=﹣x﹣3

当x=2时,y=﹣5

则点D的坐标为(2,﹣5),

∵点D在抛物线上,

∴a(2+3)(2﹣1)=﹣5

解得,a=﹣

则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3

(2)作PH⊥x轴于H,

设点P的坐标为(m,n),

当△BPA∽△ABC时,∠BAC=∠PBA,

∴tan∠BAC=tan∠PBA,即=

=,即n=﹣a(m﹣1),

解得,m1=﹣4,m2=1(不合题意,舍去),

当m=﹣4时,n=5a,

∵△BPA∽△ABC,

=,即AB2=ACPB,

∴42=

解得,a1=(不合题意,舍去),a2=﹣

则n=5a=﹣

∴点P的坐标为(﹣4,﹣);

当△PBA∽△ABC时,∠CBA=∠PBA,

∴tan∠CBA=tan∠PBA,即=

=,即n=﹣3a(m﹣1),

解得,m1=﹣6,m2=1(不合题意,舍去),

当m=﹣6时,n=21a,

∵△PBA∽△ABC,

=,即AB2=BCPB,

∴42=

解得,a1=(不合题意,舍去),a2=﹣

则点P的坐标为(﹣6,﹣),

综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);

(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,

则tan∠DAN===

∴∠DAN=60°,

∴∠EDF=60°,

∴DE==EF,

∴Q的运动时间t=+=BE+EF,

∴当BE和EF共线时,t最小,

则BE⊥DM,E(1,﹣4)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若x1 , x2是一元二次方程x2﹣3x﹣4=0的两根,则x1+x2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).

(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.

(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红去超市买了2瓶单价为m元的饮料和3个单价为n元的面包,共需_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年国庆节期间,南宁动物园在7天假期中每天接待游客的人数与前一天相比的变化情况(正数表示比前一天多的人数,负数表示比前一天少的人数)如下表:

日期

1日

2日

3日

4日

5日

6日

7日

人数变化/万人

+1.7

+0.6

+0.3

-0.3

-0.6

+0.2

-1.1

(1) 请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?

(2) 若9月30日的游客人数为3万人,求这7天的游客总人数是多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形具有而一般平行四边形不一定具有的性质是(

A. 对角线相等 B. 对角相等 C. 对角线互相平分 D. 对边相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】mn,下列不等式不一定成立的是( )

A. m+2n+2 B. 2m2n C. D. m2n2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:ab2﹣4ab+4a=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016山东潍坊第23题)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.

(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)

(2)当每辆车的日租金为多少元时,每天的净收入最多?

查看答案和解析>>

同步练习册答案