【题目】如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,现将Rt△ABC绕点A顺时针旋转30°得到△AB′C′,则图中阴影部分面积为_____.
【答案】3π﹣3
【解析】
根据旋转的性质可得AC′=AC=6,∠CAC′=30°,继而可求得DA=DC,过D作DE⊥AC于E,解直角三角形求得DE长,然后根据扇形和三角形的面积公式进行计算即可求得答案.
∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,
∴∠CAB=60°,
∵Rt△ABC绕点A顺时针旋转30°后得到△AB′C′,
∴AC′=AC=6,∠CAC′=30°,
∴∠C′AC=∠ACB,
∴DA=DC,
过D作DE⊥AC于E,
∴CE=AC=3,∠CED=90°,
∴DE=CEtan∠ACB=3tan30°=3×=,
∴图中阴影部分的面积=S扇形CAC′﹣S△ADC=﹣×6×=3π﹣3,
故答案为:3π﹣3.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是边AD上一点,过点E作EF⊥BC,垂足为点F,将△BEF绕着点E逆时针旋转,使点B落在边BC上的点N处,点F落在边DC上的点M处,若点M恰好是边CD的中点,那么 的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果为“A非常了解”、“B了解”、“C基本了解”三个等级,并根据调查结果制作了如下两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)本次调查的人数为 ;
(2)补全条形统计图;
(3)若该市约有市民100万人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A非常了解”的程度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.
满意度 | 人数 | 所占百分比 |
非常满意 | 12 | 10% |
满意 | 54 | m |
比较满意 | n | 40% |
不满意 | 6 | 5% |
根据图表信息,解答下列问题:
(1)本次调查的总人数为______,表中m的值为_______;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过弧BD上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tan∠G=,AH=3,求EM的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(m,2),B(﹣3,n)两点关于原点O对称,反比例函数y=的图象经过点A.
(1)求反比例函数的解析式并判断点B是否在这个反比例函数的图象上;
(2)点P(x1,y1)也在这个反比例函数的图象上,﹣3<x1<m且x1≠0,请直接写出y1的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2=PB2+PC2则称点P为△ABC关于点A的勾股点.
(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC关于点 的勾股点;在点E、F、G三点中只有点 是△ABC关于点A的勾股点.
(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,
①求证:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度数.
(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,
①若△ADE是等腰三角形,求AE的长;②直接写出AE+BE的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com