分析 (1)首先设直线l与BC交于点M,由菱形ABCD的对角线AC、BD相交于O,直线l与直线AC平行,易得四边形AEMC是平行四边形,△BPF≌△BPM,即可证得EM=AC,PF=PM,继而证得结论;
(2)①首先设直线l与CD交于点M,由菱形ABCD的对角线AC、BD相交于O,直线l与直线AC平行,易得四边形ACMF是平行四边形,△DPE≌△DPM,即可证得FM=AC,PE=PM,继而证得结论;
②首先设直线l与CD的延长线交于点M,由菱形ABCD的对角线AC、BD相交于O,直线l与直线AC平行,易得四边形ACMF是平行四边形,△DPE≌△DPM,即可证得FM=AC,PE=PM,继而证得结论;
③首先设直线l与CB的延长线交于点M,由菱形ABCD的对角线AC、BD相交于O,直线l与直线AC平行,易得四边形AEMC是平行四边形,△BPF≌△BPM,即可证得EM=AC,PF=PM,继而证得结论;
(3)首先由菱形的边长等于4,∠ABC=60°,且BP=$\sqrt{3}$,求得AC与PF的长,然后由图1与图4求得PE的长,再利用勾股定理,求得答案.
解答 (1)证明:如图1,设直线l与BC交于点M,
∵四边形ABCD是菱形,
∴AD∥BC,AC⊥BD,∠ABD=∠CBD,
∵直线l与直线AC平行,
∴BD⊥直线l,四边形AEMC是平行四边形,
∴∠BPF=∠BPM=90°,EM=AC,
在△BPF和△BPM中,
$\left\{\begin{array}{l}{∠FBP=∠MBP}\\{BP=BP}\\{∠BPF=∠BPM}\end{array}\right.$,
∴△BPF≌△BPM(ASA),
∴PF=PM,
∴PE+PF=PE+PM=EM,
∴PE+PF=AC;
(2)解:①如图2:设直线l与CD交于点M,
∵四边形ABCD是菱形,
∴CD∥AB,AC⊥BD,∠ADB=∠CDB,
∵直线l与直线AC平行,
∴BD⊥直线l,四边形ACMF是平行四边形,
∴∠DPE=∠DPM=90°,FM=AC,
在△DPE和△DPM中,
$\left\{\begin{array}{l}{∠DPE=∠DPM}\\{DP=DP}\\{∠EDP=∠MDP}\end{array}\right.$,
∴△DPE≌△DPM(ASA),
∴PE=PM,
∴PE+PF=PF+PM=FM,
∴PE+PF=AC;
②如图3,设直线l与CD的延长线交于点M,
∵四边形ABCD是菱形,
∴CD∥AB,AC⊥BD,∠ADB=∠CDB,
∵直线l与直线AC平行,
∴BD⊥直线l,四边形ACMF是平行四边形,
∴∠DPE=∠DPM=90°,FM=AC,
∵∠MDP=∠CDB,∠EDP=∠ADB,
∴∠MDP=∠EDP,
在△DPE和△DPM中,
$\left\{\begin{array}{l}{∠DPE=∠DPM}\\{DP=DP}\\{∠EDP=∠MDP}\end{array}\right.$,
∴△DPE≌△DPM(ASA),
∴PE=PM,
∴PF-PE=PF-PM=FM,
∴PF-PE=AC;
③如图4,设直线l与CB的延长线交于点M,
∵四边形ABCD是菱形,
∴AD∥BC,AC⊥BD,∠ABD=∠CBD,
∵直线l与直线AC平行,
∴BD⊥直线l,四边形AEMC是平行四边形,
∴∠BPF=∠BPM=90°,EM=AC,
∵∠PBM=∠CBD,∠PBF=∠ABD,
∴∠PBM=∠PBF,
在△BPF和△BPM中,
$\left\{\begin{array}{l}{∠FBP=∠MBP}\\{BP=BP}\\{∠BPF=∠BPM}\end{array}\right.$,
∴△BPF≌△BPM(ASA),
∴PF=PM,
∴PE-PF=PE-PM=EM,
∴PE-PF=AC;
故答案为:①PE+PF=AC;②PF-PE=AC;③PE-PF=AC;
(3)解:∵菱形的边长等于4,∠ABC=60°,
∴AB=AC=4,∠PBF=30°,
∴△ABC是等边三角形,
∴AC=AB=4,OB=AB•cos30°=2$\sqrt{3}$,
∵直线l⊥BD,BP=$\sqrt{3}$,
∴PF=BP•tan30°=1,
∴如图1:PE=AC-PF=4-1=3,则BE=$\sqrt{B{P}^{2}+P{E}^{2}}$=2$\sqrt{3}$;
如图4:PE=AC+PF=4+1=5,则BE=$\sqrt{B{P}^{2}+P{E}^{2}}$=2$\sqrt{7}$.
点评 此题属于四边形的综合题.考查了平行四边形的判定与性质、全等三角形的判定与性质以及勾股定理等知识.注意结合题意画出图形,利用图形求解是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com