【题目】已知:如图在菱形ABCD中,AB=4,∠DAB=30°,点E是AD的中点,点M是的一个动点(不与点A重合),连接ME并廷长交CD的延长线于点N连接MD,AN.
(1)求证:四边形AMDN是平行四边形;(2)当AM为何值时,四边形AMDN是矩形并说明理由.
【答案】(1)见解析;(2),四边形AMDN是矩形,见解析.
【解析】
(1)根据菱形的性质可得ND∥AM,再根据两直线平行,内错角相等可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明;
(2)根据矩形的性质得到DM⊥AB,结合∠DAB=30°,由直角三角形30°角所对的直角边等于斜边的一半解答.
(1)证明:∵四边形ABCD是菱形,
∴ND∥AM.
∴∠NDE=∠MAE,∠DNE=∠AME.
∵点E是AD中点,
∴DE=AE.
在△NDE和△MAE中,
,
∴△NDE≌△MAE(AAS).
∴ND=MA.
∴四边形AMDN是平行四边形;
(2)解:当AM=2时,四边形AMDN是矩形.理由如下:
∵四边形ABCD是菱形,
∴AD=AB=2,
∵平行四边形AMDN是矩形,
∴∠AMD=90°.
∵∠DAB=30°,
∴MD=AD=AB=2.
在直角△AMD中,.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.
若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.
(1)求点C的坐标;
(2)当∠BCP=15°时,求t的值;
(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.
①写出图1中所有的全等三角形 ;
②线段AF与线段CE的数量关系是 ,并写出证明过程.
问题探究:
如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.
求证:AE=2CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果2b=n,那么称b为n的布谷数,记为b=g(n),如g(8)=g(23)=3.
(1)根据布谷数的定义填空:g(2)= ,g(32)= .
(2)布谷数有如下运算性质:若m,n为正数,则g(mn)=g(m)+g(n),g()=g(m)﹣g(n).根据运算性质填空:= ,(a为正数).若g(7)=2.807,则g(14)= ,g()= .
(3)下表中与数x对应的布谷数g(x)有且仅有两个是错误的,请指出错误的布谷数,要求说明你这样找的理由,并求出正确的答案(用含a,b的代数式表示)
x | 3 | 6 | 9 | 27 | ||
g(x) | 1﹣4a+2b | 1﹣2a+b | 2a﹣b | 3a﹣2b | 4a﹣2b | 6a﹣3b |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,在下列关系中,不属于直角三角形的是( )
A. b2=a2﹣c2 B. a:b:c=3:4:5
C. ∠A﹣∠B=∠C D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图为2002年世界数学家大会的会标,它是用四个形状相同、大小相等的直角三角形拼成的正方形,请通过图形的运动,在右侧网格中补全此会标.
(1)问此正方形会标是旋转对称图形吗?答:______.
(2)若会标中直角三角形的两条直角边长分别为和,请用含(其中)的代数式表示出此正方形会标的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com