精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.

(1)利用直尺和圆规在图1确定点P,使得PM=PN;

(2)OM=x,ON=x+4,

①若x=0时,使P、M、N构成等腰三角形的点P  

②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________

【答案】(1)见解析;(2)3;:x=0x=4﹣44<x<4

【解析】

(1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交

点的直线就是MN的垂直平分线;

(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图3,构建腰长为4

的等腰直角OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根

据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就

是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN

为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.

(1)如图所示:

(2)①如图所示:

故答案为:3.

②如图3,以M为圆心,以4为半径画圆,当⊙MOB相切时,设切点为C,MOA交于D,

MCOB,

∵∠AOB=45°,

∴△MCO是等腰直角三角形,

MC=OC=4,

MD重合时,即时,同理可知:点P恰好有三个;

如图4,取OM=4,以M为圆心,以OM为半径画圆.

则⊙MOB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;

M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;

∴当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;

综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0

故答案为:x=0

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】郑州市自2019121日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.

大桶

小桶

进价(元/个)

18

5

售价(元/个)

20

8

1)该超市购进大桶和小桶各多少个?

2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.

请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,解答问题:

例题:已知二次三项式有一个因式是,求另一个因式以及的值.

解:设另一个因式为,得

解得,

∴另一个因式为的值为

仿照例题方法解答:

1)若二次三项式的一个因式为,求另一个因式;

2)若二次三项式有一个因式是,求另一个因式以及的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需个月,则根据题意可列方程中错误的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展了手机伴我健康行主题活动.他们随机抽取部分学生进行手机使用目的每周使用手机时间的问卷调查,并绘制成如图的统计图。已知查资料人人数是40人。

请你根据以上信息解答以下问题

1)在扇形统计图中,玩游戏对应的圆心角度数是_______________

2)补全条形统计图

3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的15倍匀速行驶,并比原计划提前到达目的地,设前一个小时的行驶速度为

1)直接用的式子表示提速后走完剩余路程的时间为

2)求汽车实际走完全程所花的时间.

3)若汽车按原路返回,司机准备一半路程以的速度行驶,另一半路程以的速度行驶(),朋友提醒他一半时间以的速度行驶,另一半时间以的速度行驶更快,你觉得谁的方案更快?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知yx的反比例函数,且当x2时,y=﹣3

1)求yx之间的函数关系式;

2)画出这个函数的图象;

3)试判断点P(﹣23)是否在这个函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OAOB相交于MN两点,则以下结论:(1PM=PN恒成立;(2OM+ON的值不变;(3)四边形PMON的面积不变;(4MN的长不变,其中正确的个数为(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2011山东济南,279分)如图,矩形OABC中,点O为原点,点A的坐标为(08),点C的坐标为(60).抛物线经过AC两点,与AB边交于点D

1)求抛物线的函数表达式;

2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m△CPQ的面积为S

S关于m的函数表达式,并求出m为何值时,S取得最大值;

S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案