精英家教网 > 初中数学 > 题目详情

【题目】如图一个二次函数的图象经过A,B,C三点A的坐标为(-1,0),B的坐标为(4,0),Cy轴的正半轴上AB=OC.

(1)求点C的坐标;

(2)求这个二次函数的解析式并求出该函数的最大值

【答案】(1)C的坐标为(0,5);(2)所求二次函数的解析式为y=-x2x+5,最大值为.

【解析】

(1)根据A.B两点的坐标及点Cy轴正半轴上,且AB=OC.求出点C的坐标为(0,5);

(2)设二次函数的解析式为y=ax2+bx+c,把A、B、C三点的坐标代入解析式,可求出a、b、c的值.

(1)A(-1,0),B(4,0)

AO=1,OB=4,

AB=AO+OB=1+4=5,

OC=5,即点C的坐标为(0,5);

(2)设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c

由于这个函数图象过点(0,5),可以得到C=5,又由于该图象过点(-1,0),(4,0),则:

解方程组,得

∴所求的函数解析式为y=-x2+x+5

a=-<0

∴当x=-时,y有最大值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知A组数据为2、3、6、6、7、8、8、8,B组数据为4、5、8、8、9、10、10、10,则描述A、B两组数据的统计量中相等的是(  )

A. 众数 B. 中位数 C. 平均数 D. 方差

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一块RtABC的绿地,量得两直角边AC=8cmBC=6cm.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8cm为直角边长的直角三角形,求扩充等腰△ABD的周长.

1)在图1中,当AB=AD=10cm时,△ABD的周长为

2)在图2中,当BA=BD=10cm时,△ABD的周长为

3)在图3中,当DA=DB时,求△ABD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是用个相同的小长方形与个小正方形镶嵌而成的正方形图案,已知该图案的面积为,小正方形的面积为,若用表示小长方形的两边长() ,请观察图案,指出以下关系式中,不正确的是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+cx轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.

(1)求该抛物线的解析式;

(2)在抛物线上求一点P,使SPAB=SABC,写出P点的坐标;

(3)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.

投资量x(万元)

2

种植树木利润y1(万元)

4

种植花卉利润y2(万元)

2

(1)分别求出利润y1与y2关于投资量x的函数关系式;

(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?

(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边ABCADBCAD=12,若点P在线段AD上运动,当AP+BP的值最小时,AP的长为( .

A.4B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于多项式Ax2bxcbc为常数),作如下探究:

1)不论x取何值,A都是非负数,求bc满足的条件;

2)若A是完全平方式,

①当c=9时,b= ;b=3时,c= ;

②若多项式Bx2dxcA有公因式,求d的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,的中点,分别是的三等分点,分别交两点,则等于(

A. 3:2:1 B. 4:2:1 C. 5:2:1 D. 5:3:2

查看答案和解析>>

同步练习册答案