精英家教网 > 初中数学 > 题目详情

【题目】如图是用个相同的小长方形与个小正方形镶嵌而成的正方形图案,已知该图案的面积为,小正方形的面积为,若用表示小长方形的两边长() ,请观察图案,指出以下关系式中,不正确的是(

A.B.

C.D.

【答案】D

【解析】

本题根据正方形的面积求出边长,再结合图形找出选项中算式表示的意义进行验证.

∵大正方形的面积是49,小正方形的面积是36

∴大正方形的边长为7,小正方形的边长为6

正方形的面积等于边长的平方,

x+y表示大正方形的边长,

x+y=7,故A正确;

x-y表示小正方形的边长,

x-y=6,故B正确;

4xy+36表示大正方形的面积

4xy+36=49

4xy=13,故C正确;

表示两个小长方形的面积与小正方形的面积之和,

,故D错误.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一般地,任意三角形都是自相似图形,只要顺次连接三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把(图乙)第一次顺次连接各边中点所进行的分割,称为阶分割(如图);把阶分割得出的个三角形再分别顺次连接它的各边中点所进行的分割,称为阶分割(如图)…,依此规则操作下去.阶分割后得到的每一个小三角形都是全等三角形(为正整数),设此时小三角形的面积为.请写出一个反映之间关系的等式________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是( )

A. (-2,0) B. (0,0) C. (2,0) D. (4,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线AB轴交于点A,与轴交于点B,与直线OC交于点C

1)若直线AB解析式为

求点C的坐标;

△OAC的面积.

2)如图2,作的平分线ON,若AB⊥ON,垂足为EOA4PQ分别为线段OAOE上的动点,连结AQPQ,试探索AQPQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小兰用尺规作图作ABCAC上的高BH,作法如下:

①分别以点DE为圆心,大于DE的一半长为半径作弧两弧交于F

②作射线BF,交边AC于点H

③以B为圆心,BK长为半径作弧,交直线AC于点DE

④取一点K使KBAC的两侧;

所以BH就是所求作的高.其中顺序正确的作图步骤是(  )

A.①②③④B.④③①②C.②④③①D.④③②①

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,DEAB,过点EEFDE,交BC的延长线于点F

1)求∠F的度数;

2)若CE=4,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一个二次函数的图象经过A,B,C三点A的坐标为(-1,0),B的坐标为(4,0),Cy轴的正半轴上AB=OC.

(1)求点C的坐标;

(2)求这个二次函数的解析式并求出该函数的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,直径CD弦AB于E,AMBC于M,交CD于N,连接AD.

(1)求证:AD=AN;

(2)若AB=8,ON=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料1:

对于两个正实数,由于,所以,即,所以得到,并且当时,

阅读材料2:

,则 ,因为,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.

根据以上阅读材料,请回答以下问题:

(1)比较大小

(其中≥1) -2(其中<-1)

(2)已知代数式变形为,求常数的值

(3)= 时,有最小值,最小值为 (直接写出答案).

查看答案和解析>>

同步练习册答案