【题目】a、b为有理数,现在规定一种新的运算“⊕”,如a⊕b=﹣ab+a2﹣1,则(2⊕3)⊕(﹣3)=_____.
科目:初中数学 来源: 题型:
【题目】在我市开展的“‘新华杯’中学双语课外阅读”活动中,某中学为了解八年级400名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 2 | 10 | 15 | 17 | 6 |
(1)求这50个样本数据的众数和中位数;
(2)根据样本数据,估计该校八年级400名学生在本次活动中读书多于2册的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为(-3,-6)的抛物线经过点(-1,-4),则下列结论中错误的是( )
A. B.
C. 若点(-2,),(-5,) 在抛物线上,则 D. 关于的一元二次方程的两根为-5和-1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2 , 则x1+x2=﹣ , x1x2= , 阅读下面应用韦达定理的过程:
若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2 , 求x12+x22的值.
解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韦达定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列问题:
(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1 , x2 , 不解方程,求x12+x22的值;
(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α2+β2=4,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据: =1.41, =1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程求解
(1)m为何值时,关于x的一元一次方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.
(2)已知|a﹣3|+(b+1)2=0,代数式的值比b﹣a+m多1,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=3x2的图象先向下平移3个单位,再向左平移4个单位所得的解析式为( )
A.y=3(x﹣3)2+4B.y=3(x+4)2﹣3
C.y=3(x﹣4)2+3D.y=3(x﹣4)2﹣3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com