【题目】在△ABC和△ADE中,AB=AC,∠BAC=120°,∠ADE=90°,∠DAE=60°,F为BC中点,连接BE、DF,G、H分别为BE,DF的中点,连接GH.
(1)如图1,若D在△ABC的边AB上时,请直接写出线段GH与HF的位置关系 ,= .
(2)如图2,将图1中的△ADE绕A点逆时针旋转至图2所示位置,其它条件不变,(1)中结论是否改变?请说明理由;
(3)如图3,将图1中的△ADE绕A点顺时针旋转至图3所示位置,若C、D、E三点共线,且AE=2,AC=,请直接写出线段BE的长 .
【答案】(1)GH⊥HF,;(2)结论不变;(3).
【解析】
(1)如图1中,连接DG,FG.根据直角三角形斜边中线的性质,可得GD=GF,再证明△DGF是等边三角形即可解决问题;
(2)结论不变.如图2中,延长ED至S,使DS=DE,连接AS,BS,CE,FG,DG.理由三角形的中位线定理,证明GD=GF,△GDF是等边三角形即可解决问题;
(3)如图3中,延长ED到H,使得DH=DE,连接AH,BH,作BM⊥EC于M,设BC交AH于点O.想办法证明∠BHE=60°,解直角三角形求出BM,ME即可解决问题;
解:(1)如图1中,连接DG,FG.
∵AB=AC,BF=CF,
∴AF⊥ BC,∴ ∠ BAF= ∠ CAF=60°,
∵ ED⊥ AB,
∴ ∠ BFE=∠ BDE=90°,
∵BG=GE,
∴DG=BE,GF=BE,
∴DG=FG,∵DH=HF,
∴GH⊥ DF,
∵ ∠ BAE=60°,
∴ ∠ ABE+∠ AEB=120°,
∵ DG=BG=GF=GE,
∴ ∠ GBD=∠ GDB,∠ GEF=∠GFE,
∴ ∠ BGD+∠ EGF=120°,
∴ ∠ DGF=60°,
∴ △ DGF是等边三角形,
∴=tan60°= .
故答案为GH⊥ HF, =.
(2)结论不变.
理由:如图2中,延长ED至S,使DS=DE,连接AS,BS,CE,FG,DG.
∵ ∠ ADE=90°
∴ AS=AE,∠DAE=∠DAS=60°
∴ ∠ BAC=∠SAE=120°
∴ ∠ SAB= ∠ EAC
∵AB=AC
∴ △ ABS ≌ △ ACE
∴ BS=CE,∠ ABS=∠ACE
∵F,G分别为BC,BE中点
∴FG∥CE,FG=CE,
同理:DG∥BS,DG=BS,
∴DG=FG,
∵H为DF中点,
∴ GH⊥ HF,
延长SB交CE延长线于T,
∵ ∠ ABS+∠ABT=∠ ACE+∠ ABT=180°,
∴ ∠ BAC+∠ T=120°,
∴ ∠ T=60°,
延长FG交BT于P,
∴ ∠ T=∠ BPF=∠ DGF=60°,
∴ ∠HGF=30°,
∴ =.
(3)如图3中,延长ED到H,使得DH=DE,连接AH,BH,作BM⊥EC于M,设BC交AH于点O.
∵AD⊥EH,ED=DH,
∴AE=AH,
∴∠AEH=∠AHE=30°,
∴∠EAH=∠BAC=120°,
∴∠BAH=∠CAE,
∵AB=AC,AH=AE,
∴△BAH ≌ △ CAE(SAS),
∴ ∠ BHA=∠ AEC=30°,BH=CE,
∴∠ OBA=∠OHC=30°,
∵∠AOB=∠COH,
∴△AOB ∽ △COH,
∴ = ,
∴
∴ △ AOC∽ △ BOH,
∴∠BHO=∠AOC=30°,
∴∠BHE=30°+30°=60°,
在Rt△ADE中,∵AE=2,∠ AED=30°,
∴AD=1,ED=DH=,
在Rt△ADC中,CD== ,
∴BH=EC=2 ,
在Rt△BMH中,HM=(2+),BM=HM=(2+3),
∴EM=EH﹣HM=2﹣(2+ )= ﹣1,
在Rt△EBM中,BE= = =.
故答案为 .
科目:初中数学 来源: 题型:
【题目】如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两块全等的含30°角的三角尺按如图1所示的方式摆放在一起,它们较短的直角边BC=EC=3.
(1)将△ECD沿直线l向左平移到图2的位置,使点E′落在AB上,则CC′= ;
(2)将△ECD绕点C逆时针旋转到图3的位置,使点E′落在AB上,则△ECD绕点C旋转的度数为 ;
(3)将△ECD沿直线AC翻折到图4的位置,ED′与AB相交于点F,求证:AF=FD′.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如下(未完成),解答下列问题:(1)若A组的频数比B组小24,求频数分布直方图中a= ,b= ;(2)扇形统计图中n= ,并补全频数分布直方图;
(3)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段Q=(t﹣150)2+100 (0≤t≤300)表示,(注:市场售价和种植成本的单位:元/100kg,时间单位:天)
(1)写出图(1)表示的市场售价P与时间t的函数关系式;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com