精英家教网 > 初中数学 > 题目详情
二次函数y=2x2-x
(1)当x
 
时,y>0.
(2)若0≤x≤-1,则y的最大值为
 
;最小值为
 

(3)图象绕顶点旋转180°,得到的新关系式为
 

(4)若y=2x2-x+c的顶点在x轴上,则C=
 

(5)与y=2x2-x形状相同且(3,4)为顶点的关系式为
 
考点:二次函数的性质
专题:计算题
分析:(1)根据抛物线与x轴的交点问题,解方程2x2-x=0可得到抛物线与x轴两交点坐标,然后写出抛物线在x轴上方所对应的自变量的取值范围即可;
(2)利用配方法得到抛物线的对称轴为直线x=
1
4
,则0≤x≤-1在对称轴左侧,然后分别计算x=0和x=-1时的函数值即可;
(3)先配成顶点式y=2(x-
1
4
2-
1
8
得到抛物线顶点坐标为(
1
4
,-
1
8
),由于图象绕顶点旋转180°,则顶点坐标不变,只是开口方向改变,所以利用顶点式写出旋转后的抛物线解析式;
(4)根据抛物线与x轴的交点问题得到△=(-1)2-4•2•c=0,然后解方程即可;
(5)先根据形状相同得到a=±2,然后利用顶点式写出抛物线解析式.
解答:解:(1)当y=0时,2x2-x=0,解得x1=0,x2=
1
2

所以抛物线与x轴两交点坐标为(0,0),(
1
2
,0),
而抛物线开口向上,
所以当x<0或x>
1
2
时,y>0;
(2)y=2x2-x=2(x-
1
4
2-
1
8

抛物线的对称轴为直线x=
1
4

而x=0时,y=0;x=-1时,y=2+1=3,
所以0≤x≤-1,y的最大值为3;最小值为0;
(3)y=2x2-x=2(x-
1
4
2-
1
8

抛物线顶点坐标为(
1
4
,-
1
8
),
所以抛物线绕顶点旋转180°,所得新抛物线解析式为y=-2(x-
1
4
2-
1
8
=-2x2+x-
1
4

(4)△=(-1)2-4•2•c=0,解得c=
1
8

(5)y=±2(x-3)2+4.
故答案为<0或x>
1
2
;3,0;y=-2x2+x-
1
4
1
8
;y=±2(x-3)2+4.
点评:本题考查而次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a
),对称轴直线x=-
b
2a
,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-
b
2a
时,y随x的增大而减小;x>-
b
2a
时,y随x的增大而增大;x=-
b
2a
时,y取得最小值
4ac-b2
4a
,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-
b
2a
时,y随x的增大而增大;x>-
b
2a
时,y随x的增大而减小;x=-
b
2a
时,y取得最大值
4ac-b2
4a
,即顶点是抛物线的最高点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算:-3+4=
 
,3-|-6|=
 
,-2-1=
 
,0-6=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

用科学记数法表示:-0.00000000105=
 
;0.0001234×108=
 
.用小数表示7.8×10-5=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,四边形ABCD内接于⊙O,AD、BC的延长线交于点E.求证:ED•EA=EB•EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC是等腰直角三角形,△DEG是等腰直角三角形,E,F是中点,BD=7,CD=1,求GF.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(
a+1
2
2
a-1
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知tanα+(tanα)-1=3,α为锐角,则tan2α+(tanα)-2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

“欲穷千里目,更上一层楼”是唐代诗人王之涣的不朽诗句.不过我们现在地球上看到据观测点1000米处的景色,“更上一层楼”中的楼到底有多高呢?存在这样的楼房吗?(设
AC
代表地面,O为地球球心,C是地面上一点,
AC
=500km,地球半径为6370km,cos4.5°=0.997)

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:
4a+4b
5ab
15a2b
a2-b2

查看答案和解析>>

同步练习册答案