【题目】甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)写出表格中a,b,c的值;
(2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
【答案】 (1)a=7, b=7.5, c=1.2;(2)选甲,方差小或选乙,中位数,众数高
【解析】
(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据甲的平均数利用方差的公式计算即可;
(2)结合平均数和中位数、众数、方差三方面的特点进行分析,若选派一名学生参加比赛的话,可选择乙参赛.
(1)解:(1)甲的平均成绩(环),
甲的方差为:
;
∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数(环),
故答案为:,,;
(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
科目:初中数学 来源: 题型:
【题目】先阅读下面的内容,再解决问题.
例题:若,求和的值.
解:∵
∴
即
∴,
∴,
问题:(1)若,求的值;
(2)已知是的三边长,满足,且中最长的边的长度为,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,在锐角△ABC中,BD和BE三等分∠ABC,CD和CE三等分∠ACB,请分别写出∠A和∠D,∠A和∠E的数量关系,并选择其中一个说明理由;
(2)如图②,在锐角△ABC中,BD和BE三等分∠ABC,CD和CE三等分外角∠ACM,请分别写出∠A和∠D,∠A和∠E的数量关系,并选择其中一个说明理由;
(3)如图③,在锐角△ABC中,BD和BE三等分外角∠PBC,CD和CE三等分外角∠QCB,请分别直接写出∠A和∠D,∠A和∠E的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AB,AC上,且DE∥BC,将△ADE绕点A顺时针旋转,记旋转角为α.
(1)问题发现 当a=0°时,线段BD,CE的数量关系是______;
(2)拓展探究 当0°≤a<360°时,(1)中的结论有无变化?请仅就图2的情形给出证明;
(3)问题解决 设DE=,BC=3,0°≤α<360°,△ADE旋转至A,B,E三点共线时,直接写出线段BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的坐标系中,△ABC的三个顶点的坐标分别为A(1,2),B(4,1),C(2,﹣2).
(1)请写出△ABC关于x轴对称的点A1,B1,C1的坐标;
(2)请在坐标系中作出△ABC关于y轴对称的△A2B2C2;
(3)计算△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,延长BC到D,∠ABC和∠ACD的平分线相交于P.
(1)若∠A=60°,则∠P= .
(2)请你用数学表达式归纳出∠P与∠A的关系: .
(3)请说明你的结论(2)正确的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形QABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com