精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,过点AAD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1cm的速度运动,同时点Q从点C出发沿射线CB方向以每秒2cm的速度运动,在线段QC上取点E,使得QE =2cm,连结PE,设点P的运动时间为t秒.

(1)①CE= 用含t的式子表示)

PE⊥BC,BQ的长;

(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。

【答案】(1)①CE=2t -2②(2)存在,t=412s

【解析】分析:(1)作AM⊥BC于M,由已知条件得出AB=AC,由等腰三角形的性质得出BM=CM,由直角三角形斜边上的中线性质得出AM=BC=5,证出△APN和△CEN是等腰直角三角形,得出PN=AP=t,CE=NE=5-t,由CE=CQ-QE=2t-2得出方程,解方程即可;
(2)由平行四边形的判定得出AP=BE,分类讨论得出方程,解方程即可.

详解:(1)①CE= 2t -2(用含t的式子表示)

AM⊥BCM,如图所示:

∵∠BAC=90°,∠B=45°,

∴∠C=45°=∠B,

∴AB=AC,

∴BM=CM,

∵AD∥BC,

∴∠PAN=∠C=45°,

∵PE⊥BC,

∴PE=AM=5,PE⊥AD,

∴△APN△CEN是等腰直角三角形,

∴PN=AP=t,CE=NE=5-t,

∵CE=CQ-QE=2t-2,

∴5-t=2t-2,

解得: ;

(2)存在,t=412s;理由如下:

(ⅰ)当点Q、E在线段BC上时,

若以A,B,E,P为顶点的四边形为平行四边形,

AP=BE,

∴t=10-2t+2,

解得:t=4,

(ⅱ)当点Q、E在线段CB的延长线上时,

若以A,B,E,P为顶点的四边形为平行四边形

AP=BE,

t=2t-2-10

解得:t=12

存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=412 s。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算: +( 1﹣( +1)( ﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AD平分∠BACBC于点D,点FBA的延长线上,点E在线段CD上,EFAC相交于点G,AD∥EF.

(1)求证:∠BDA+CEG=180°

(2)若点HFE的延长线上,且∠F=H,则∠EDH与∠C相等吗,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:

(1)“快车”行驶里程不超过5公里计费8元;

(2)“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;

(3)A点的坐标为(6.5,10.4);

(4)从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元,其中正确的个数有(

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧 上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC.

(1)求证:PB为⊙O的切线;
(2)若tan∠BCA= ,⊙O的半径为 ,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BECFBADC,下面给出四个结论:BECF;②ABDC;③

④四边形ABCD是矩形.其中说法正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点P、Q分别是边AD和BC的中点,沿过C点的直线折叠矩形ABCD使点B落在线段PQ上的点F处,折痕交AB边于点E,交线段PQ于点G,若BC长为3,则线段FG的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)27-18+43-32

(3)(+)﹣(﹣)﹣|﹣3| (4)

(5)﹣64÷3×; (6)-22++77+0

(7) (8)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=600mm,则油的最大深度为mm.

查看答案和解析>>

同步练习册答案