精英家教网 > 初中数学 > 题目详情

【题目】如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧 上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC.

(1)求证:PB为⊙O的切线;
(2)若tan∠BCA= ,⊙O的半径为 ,求弦AB的长.

【答案】
(1)

证明:连接OA,OB,如图所示:

∵AP为圆O的切线,

∴∠OAP=90°,

在△OAP和△OBP中,

∴△OAP≌△OBP(SSS),

∴∠OAP=∠OBP=90°,

则BP为圆O的切线;


(2)

解:延长线段BO,与圆O交于E点,连接AE,

∵BE为圆O的直径,∴∠BAE=90°,

∵∠AEB和∠ACB都对

∴∠AEB=∠ACB,

∴tan∠AEB=tan∠ACB=

设AB=2x,则AE=3x,

在Rt△AEB中,BE=2

根据勾股定理得:(2x)2+(3x)2=(2 2

解得:x=2或x=﹣2(舍去),

则AB=2x=4.


【解析】(1)连接OA,OB,根据AP为圆O的切线,利用切线的性质得到∠OAP为直角,由半径OA=OB,已知AP=BP,以及公共边OP,利用SSS得出△OAP≌△OBP,利用全等三角形的对应角相等得到∠OBP为直角,即BP垂直于OB,可得出BP为圆O的切线;(2)延长BO与圆交于点E,连接AE,利用同弧所对的圆周角相等得到∠AEB=∠ACB,可得出tan∠AEB的值,由BE为圆O的直径,利用直径所对的圆周角为直角,得到∠BAE为直角,在直角三角形AEB中,设AB=2x,得到AE=3x,再由直径BE的长,利用勾股定理得到关于x的方程,求出方程的解得到x的值,即可求出弦AB的长.
【考点精析】掌握垂径定理和解直角三角形是解答本题的根本,需要知道垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将下列各数填入相应的集合中:

—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,

有理数集合:{ };

无理数集合:{ };

整数集合:{ };

分数集合:{ }

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在的正半轴上,点B的坐标为(3,4)一次函数的图象与边OC、AB分别交于点D、E,并且满足OD= BE.点M是线段DE上的一个动点.

(1)求b的值;

(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;

(3)设点N是轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题.
(1)在这次调查活动中,一共调查了名学生,并请补全统计图.
(2)“羽毛球”所在的扇形的圆心角是度.
(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.

(1)求证:四边形BCFE是菱形;

(2)若CE=4,BCF=120°,求菱形BCFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,过点AAD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1cm的速度运动,同时点Q从点C出发沿射线CB方向以每秒2cm的速度运动,在线段QC上取点E,使得QE =2cm,连结PE,设点P的运动时间为t秒.

(1)①CE= 用含t的式子表示)

PE⊥BC,BQ的长;

(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(﹣1,0).

(1)求点C的坐标;
(2)求过A、B、C三点的抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标;
(4)在抛物线对称轴上,是否存在这样的点M,使得△MPC(P为上述(3)问中使S最大时的点)为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC切于点E,且AB=BE

(1)求证:AB是⊙O的切线;
(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD为线段AB上的两点,MN分别是线段ACBD的中点.

(1)如果CD=5cm,MN=8cm,求AB的长;

(2)如果AB=aMN=b,求CD的长.

查看答案和解析>>

同步练习册答案