精英家教网 > 初中数学 > 题目详情

【题目】将一矩形纸片OABC放在平面直角坐标系中,O为原点,点Ax轴上,点Cy轴上,OA=10OC=8,如图在OC边上取一点D,将△BCD沿BD折叠,使点C恰好落在OA边上,记作E点;

1)求点E的坐标及折痕DB的长;

2)在x轴上取两点MN(点M在点N的左侧),且MN=4.5,求使四边形BDMN的周长最短的点M、点N的坐标。

【答案】(1)E(4,0);DB=5;(2)M(1.5,0);N(6,0);

【解析】

(1)、根据矩形的性质得到BC=OA=10,AB=OC=8,再根据折叠的性质得到BC=BE=10,DC=DE,易得AE=6,则OE=10-6=4,即可得到E点坐标;在Rt△ODE中,设DE=x,则OD=OC-DC=OC-DE=8-x,利用勾股定理可计算出x,再在Rt△BDE中,利用勾股定理计算出BD;(2)、D、M、N为顶点作平行四边形DMND′,作出点B关于x轴对称点B′,则易得到B′的坐标,D′的坐标,然后利用待定系数法求出直线D′B′的解析式,令y=0,得-2x+12=0,确定N点坐标,也即可得到M点坐标.

(1)、∵四边形OABC为矩形, ∴BC=OA=10,AB=OC=8,

∵△BCD沿BD折叠,使点C恰好落在OAE点上, ∴BC=BE=10,DC=DE,

Rt△ABE中,BE=10,AB=8, ∴AE=6, ∴OE=10-6=4, ∴E点坐标为(4,0);

Rt△ODE中,设DE=x,则OD=OC-DC=OC-DE=8-x, ∴x2=42+(8-x)2,解得x=5,

Rt△BDE中, BD=

(2)、D、M、N为顶点作平行四边形DMND′,作出点B关于x轴对称点B′,如图,

∴B′的坐标为(10,-8),DD′=MN=4.5,∴D′的坐标为(4.5,3),

设直线D′B′的解析式为y=kx+b,

B′(10,-8),D′(4.5,3)代入得,10k+b=-8,4.5k+b=3,解得k=-2,b=12,

∴直线D′B′的解析式为y=-2x+12, y=0,得-2x+12=0,解得x=6,

∴M(1.5,0);N(6,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,FAB的中点,DEAB交于点G,EFAC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:

①EFAC四边形ADFE为菱形;③AD=4AG④FH=BD

其中正确结论的为______(请将所有正确的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点EAB上,点DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于点F,试判断△AFC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC=4,BD=6,P是BD上的任意一点,过点P作EF∥AC,与菱形的两条边分别交于点E、F.设BP=x,EF=y,则下列图象能大致反映y与x的函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB,AC于M、N,则△AMN的周长为( )

A.12
B.4
C.8
D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB 为⊙O 的切线,切点为 B,连接 AO 与⊙O 交与点 C,BD 为⊙O 的直径,连接 CD,若∠A=30°,OA=2,则图中阴影部分的面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.

(1)每个篮球和足球各需多少元?

(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1的图形我们把它称为“8字形”,则∠A,∠B,∠C,∠D四个角的数量关系是   

(2)如图2,若∠BCD,∠ADE的角平分线CPDP交于点P,则∠P与∠A,∠B的数量关系为∠P   

(3)如图3,CMDN分别平分∠BCD,∠ADE,当∠A+∠B=80°时,试求∠M+∠N的度数(提醒:解决此问题可以直接利用上述结论);

(4)如图4,如果∠MCDBCD,∠NDEADE,当∠A+∠Bn°时,试求∠M+∠N的度数.

查看答案和解析>>

同步练习册答案