【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由;
(3)在(2)的条件下,如果矩形AFBD是正方形,确定△ABC的形状并说明理由.
【答案】(1)见解析;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,见解析;(3)当矩形AFBD是正方形,△ABC是等腰直角三角形,见解析
【解析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;
(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.
(3)根据正方形的性质和等腰直角三角形的判定定理即可得到结论.
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∴AF=BD,
∴DB=CD;
(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD(三线合一),
∴∠ADB=90°,
∴AFBD是矩形.
(3)当矩形AFBD是正方形,△ABC是等腰直角三角形,且∠BAC=90°;
∵矩形AFBD是正方形,
∴AD=BD,
∵∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD=BD=CD=BC,
∴∠BAC=90°,
即△ABC是等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】下列事件中,是随机事件的是( )
A.任意选择某一电视频道,它正在播放新闻联播
B.三角形任意两边之和大于第三边
C. 是实数,
D.在一个装着白球和黑球的袋中摸球,摸出红球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是等腰直角三角形,分别以直角边 AC,BC 为直径画弧,若 AB=2 ,则图中阴影部分的面积是( )
A. ﹣
B. ﹣
C. ﹣
D. +
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个长方形,然后按图2形状拼成一个正方形.
(1)图2的空白部分的边长是多少?(用含a,b的式子表示).
(2)观察图2,用等式表示出和的数量关系.
(3)若2a+b=6,且ab=2,求图2的空白正方形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC与△A′B′C′在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: A′ ;B′ ;C′ ;
(2)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器超市销售每台进价分别为2000元、1700元的、两种型号的空调,如表是近两周的销售情况:
销售时段 | 销售数量 | 销售款 | |
种型号 | 种型号 | ||
第一周 | 4台 | 5台 | 20500元 |
第二周 | 5台 | 10台 | 33500元 |
(1)求、两种型号的空调的销售单价;
(2)求近两周的销售利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)阅读以下内容:
已知实数x,y满足x+y=2,且求k的值.
三位同学分别提出了以下三种不同的解题思路:
甲同学:先解关于x,y的方程组,再求k的值.
乙同学:先将方程组中的两个方程相加,再求k的值.
丙同学:先解方程组,再求k的值.
(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.
(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)
请先在以下相应方框内打勾,再解答相应题目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)本次接受随机抽样调查的学生人数为 , 图①中m的值是;
(Ⅱ)求本次你调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com