精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1的正方形组成的网格中,三角形AOB的顶点均在格点上,A(3,2),B(1,3),

(1)将三角形AOB先向左平移3个单位长度,后向下平移1个单位得到三角形A1O1B1,请直接作出三角形A1O1B1

(2)请直接写出三角形A1O1B1三个顶点的坐标;

(3)三角形A1O1B1的面积为_______平方单位.

【答案】(1)画图见解析;(2)A1(0,1);B1(-2,2);O1(-3,-1);(3)3.5.

【解析】

1)(2)根据网格结构找出点A、O、B平移后的对应点A1、O1、B1的位置,依次连接各点即可.
(3)利用△AOB所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.

(1)答案如图:

(2)由图即可知:A1(0,1);B1(-2,2);O1(-3,-1).

(3)3.5; △AOB的面积为所在的矩形的面积减去四周三个直角三角形的面积.

S=3×3-2×1×-1×3×-3×2×=3.5 .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EF分别是ABCD的中点

求证:四边形AECF是平行四边形;

是否存在a的值使得四边形AECF为菱形,若存在求出a的值,若不存在说明理由;

如图,点P是线段AF上一动点且

求证:

直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=120°,射线OCOA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线ODOB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OCOD同时旋转,设旋转的时间为t(0≤t≤15).

(1)当t为何值时,射线OCOD重合;

(2)当t为何值时,∠COD=90°;

(3)试探索:在射线OCOD旋转的过程中,是否存在某个时刻,使得射线OCOBOD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作与证明:如图,把一个含角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点EF分别在正方形的边CBCD上,连接ACAE其中ACEF交于点N,取AF中点M,连接MDMN

求证:是等腰三角形;

的条件下,请判断MDMN的数量关系和位置关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC,∠C=90°,AC≠BC.

(1)请用尺规作图(不写作法,保留作图痕迹).
①作∠B的角平分线,与AC相交于点D;
②以点B为圆心、BC为半径画弧交AB于点E,连接DE.
(2)根据(1)所作的图形,写出一对全等三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,一次函数的图象经过点A(2,3)与点B(0,5).

(1)求此一次函数的表达式;

(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系上,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,点B(1,3),将△ABC以点B为旋转中心顺时针方向旋转90°得到△DBE,恰好有一反比例函数y= 图象恰好过点D,则k的值为(
A.6
B.﹣6
C.9
D.﹣9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,以△ABC的边ABAC向外作正方形ABDE和正方形ACFG,试判断△ABC△AEG面积之间的关系,并说明理由。

2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O是直线上的一点,∠AOB是直角,OE平分∠AOC

(1) 在图①中,若∠BOD=28°,求∠AOE的度数

(2) 将图①中的∠AOB绕顶点O顺时针旋转至图②的位置若∠BOD=α,试用含α的式子表示∠AOE,并说明理由

(3) 继续旋转AOB至图③的位置,若∠BOD=α,其他条件不变,试将图形补充完整,求∠AOE的度数.(用含α的式子表示)

查看答案和解析>>

同步练习册答案