【题目】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.
(1)猜想DG与CF的数量关系,并证明你的结论;
(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.
【答案】(1)结论:CF=2DG,理由见解析;(2)△PCD的周长的最小值为10+2.
【解析】
(1)结论:CF=2DG.只要证明△DEG∽△CDF即可;
(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
(1)结论:CF=2DG.
理由:∵四边形ABCD是正方形,
∴AD=BC=CD=AB,∠ADC=∠C=90°,
∵DE=AE,
∴AD=CD=2DE,
∵EG⊥DF,
∴∠DHG=90°,
∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,
∴∠CDF=∠DEG,
∴△DEG∽△CDF,
∴==,
∴CF=2DG.
(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,
此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,
∴EH=2DH=2,
∴HM==2,
∴DM=CN=NK==1,
在Rt△DCK中,DK===2,
∴△PCD的周长的最小值为10+2.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴相交于、两点,与轴相交于点,点、是二次函数图象上的一对对称点,一次函数的图象过点、.
求点的坐标;
求一次函数的表达式;
根据图象写出使一次函数值大于二次函数值的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,OA=OB,点B的坐标为(1,0),AB=,线段OB上的动点(点C不与O、B重合),连接AC,作AC⊥CD,作DE⊥x轴,垂足为点E.
(1)求证:△ACO≌△CDE;
(2)猜想△BDE的形状,并证明结论:
(3)如图2,当△BCD为等腰三角形时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的距离为整数的点有( )个.
A.5B.6C.7D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形方格纸中,我们把顶点都在“格点”上的三角形称为“格点三角形“,如图,△ABC是一个格点三角形,点A的坐标为(﹣1,2).
(1)点B的坐标为 ,△ABC的面积为 ;
(2)在所给的方格纸中,请你以原点O为位似中心,将△ABC放大为原来的2倍,放大后点A、B的对应点分别为A1、B1,点B1在第一象限;
(3)在(2)中,若P(a,b)为线段AC上的任一点,则放大后点P的对应点P1的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )
A. 18 B. 22 C. 24 D. 46
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1所示,在Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,点E在直角边BC上,若∠CDE=45°,求证:△ACD∽△BDE.
(2)如图2所示,在矩形ABCD中,AB=4cm,BC=10cm,点E在BC上,连接AE,过点E作EF⊥AE交CD(或CD的延长线)于点F.
①若BE:EC=1:9,求CF的长;
②若点F恰好与点D重合,请在备用图上画出图形,并求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在△ABC中,BC=3,∠A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com