精英家教网 > 初中数学 > 题目详情

【题目】如图所示,MNEF分别表示两个互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=2;光线BC经过镜面EF反射后的光线为CD,此时∠3=4.试判断ABCD的位置关系,你是如何思考的?

【答案】ABCD.理由见解析

【解析】试题分析:ABCD,要证明ABCD,即要证明∠ABC=BCD,即要证明∠1+2=3+4,由已知条件不难证明∠1+2=3+4.

试题解析:

解:ABCD理由如下:

MNEF

∴∠2=3,

∵∠1=2,2=3,3=4,

∴∠1+2=3+4,

∵∠1+ABC2=180°3+BCD4=180°

∴∠ABC=BCD

ABCD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AD∥BC,E,F,G,H分别是梯形各边的中点.

(1)请用全等符号表示出图中所有的全等三角形(不得添加辅助线),并选其中一对加以证明;
(2)求证:四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A﹣结伴步行、B﹣自行乘车、C﹣家人接送、D﹣其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:

(1)本次抽查的学生人数是多少人?
(2)请补全条形统计图;
(3)请补全扇形统计图,并在图中标出“自行乘车”对应扇形的圆心角的度数;
(4)如果该校学生有2080人,请你估计该校“家人接送”上学的学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B在旋转过程中所经过的路线的长是cm.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.

(1)如果∠CBD=∠E,求证:BC是⊙O的切线;
(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;
(3)在(1)的条件下,若tanE= ,BC= ,求阴影部分的面积.(计算结果精确到0.1)
(参考数值:π≈3.14, ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地植物园从正门到侧门有一条小路,甲徒步从正门出发匀速走向侧门,乙与甲同时出发,骑自行车从侧门匀速前往正门到达正门后休息0.2小时,然后按原路原速匀速返回侧门,图中折线分别表示甲、乙到侧门的距离y(km)与出发时间x(h)之间的函数关系图象,根据图象信息解答下列问题:

(1)求甲到侧门的距离yx之间的函数关系式;

(2)求甲、乙第一次相遇时到侧门的距离.

(3)求甲、乙第二次相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知动点A在函数 的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形DOE的半径为3,边长为 的菱形OABC的顶点A,C,B分别在OD,OE, 上,若把扇形DOE围成一个圆锥,则此圆锥的高为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AOB在同一直线上,射线OD和射线OE分别平分∠AOC和∠BOC.

1)当∠BOE=25°时,求∠AOD的度数

2)在图中找出∠COD的补角,并说明理由.

查看答案和解析>>

同步练习册答案