精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是O的弦,半径OCAB交AB于点D,点P是O上AB上方的一个动点(P不与A、B重合),已知∠APB=60°,∠OCB=2∠BCM.

(1)设A=α,当圆心O在APB内部时,写出α的取值范围;

(2)求证:CM是O的切线;

(3)若OC=4,PB=4,求PC的长.

【答案】(1)当圆心O在APB内时,α的取值范围为30°<α<90°;(2)证明见解析;(3)2+2

【解析】

(1)取特殊情况:当O点在PA上,即AP为直径,根据圆周定理得∠PBA=90°,而∠APB=60°,得到此时∠A=30°;当O点在PB上,即BP为直径,得到∠A=90°;由此得到当圆心O在∠APB内时,α的取值范围为30°<α<90°;

(2)连结OB,根据垂径定理由OCAB得到AC=BC弧,再根据圆周角定理得∠APB=BCP,于是由∠APB=60°得到∠BPC=30°,然后利用∠BOC=2BPC=60°可判断OBC为等边三角形,则∠MCB=30°,可计算出∠OCM=OCB+MCB=90°,于是根据切线的判定定理即可得到结论;

(3)作BEPCE,如图,在RtPBE中,根据含30度的直角三角形三边的关系得到BE=PB=2,PE=BE=2,再由OBC为等边三角形得BC=OC=4,则可根据勾股定理计算出CE,然后利用PC=PE+CE进行计算即可.

(1)当O点在PA上,即AP为直径,则∠PBA=90°,而∠APB=60°,所以此时∠A=30°;

O点在PB上,即BP为直径,则∠A=90°;

所以当圆心O在∠APB内时,α的取值范围为30°<α<90°;

(2)证明:连结OB,如图,

OCAB,

∴∠APB=BCP,

∵∠APB=60°,

∴∠BPC=30°,

∴∠BOC=2BPC=60°,

∴△OBC为等边三角形,

∴∠OCB=60°,

∵∠OCB=2BCM,

∴∠MCB=30°,

∴∠OCM=OCB+MCB=90°,

OCMC,

CM与⊙O相切;

(3)作BEPCE,如图,

RtPBE中,∠BPE=30°,PB=4

BE=PB=2,PE=BE=2

∵△OBC为等边三角形,

BC=OC=4,

RtBEC中,CE=

PC=PE+CE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,三个顶点的坐标分别为,以原点为位似中心,将缩小,使变换后得到的对应边的比为,则线段的中点变换后对应的点的坐标为(

A. (2,) B. (-2,-) C. (2,)(-2,-) D. (8,6)(-8,-6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在矩形ABCD中,AB=8,AD=4.点P从点A出发,沿A→D→C→D运动,速度为每秒2个单位长度;点Q从点A出发向点B运动,速度为每秒1个单位长度.P、Q两点同时出发,点Q运动到点B时,两点同时停止运动,设点Q的运动时间为t(秒).连结PQ、AC、CP、CQ.

(1)P到点C时,t=   ;当点Q到终点时,PC的长度为   

(2)用含t的代数式表示PD的长;

(3)当三角形CPQ的面积为9时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做规形图

1)观察规形图,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;

2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XYXZ恰好经过点BC,∠A=40°,则∠ABX+ACX等于多少度;

②如图3DC平分∠ADBEC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;

③如图4,∠ABD,∠ACD10等分线相交于点G1G2G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别在ABAC上,DEBCFAD上一点,FE的延长线交BC的延长线于点G.求证:

(1)EGH>ADE

(2)EGHADEAAEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4,BC=3,连接AC,P和⊙Q分别是△ABC和△ADC的内切圆,则PQ的长是( )

A. B. 2 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD是⊙O的直径,P上一个动点(不与B、C重合),PM、PN分别垂直CD、AB,垂足分别为点M、N.若∠AOC=60°,OA=4,则MN的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程ykm)与小明离家时间xh)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.

1)求小明骑车的速度和在甲地游玩的时间;

2)小明从家出发多少小时后被妈妈追上?此时离家多远?

3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,ACBD相交于点OAE平分BAD,交BCE,若EAO=15°,则BOE的度数为 度.

查看答案和解析>>

同步练习册答案