精英家教网 > 初中数学 > 题目详情
2.已知:如图,平面直角坐标系中,A(0,8),B(0,4),点C是x轴上一点,点D为OC的中点.
(1)求证:BD∥AC;
(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;
(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.

分析 (1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;
(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;
(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.

解答 解:(1)∵A(0,8),B(0,4),
∴OA=8,OB=4,点B为线段OA的中点,
∵点D为OC的中点,即BD为△AOC的中位线,
∴BD∥AC;

(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,6),
∵BD∥AC,BD与AC的距离等于2,
∴BF=2,
∵在Rt△ABF中,∠AFB=90°,AB=4,点G为AB的中点,
∴FG=BG=$\frac{1}{2}$AB=2,
∴△BFG是等边三角形,∠ABF=60°.
∴∠BAC=30°,
设OC=x,则AC=2x,
根据勾股定理得:OA=$\sqrt{A{C}^{2}-O{C}^{2}}$=$\sqrt{3}$x,
∵OA=8,
∴x=$\frac{8\sqrt{3}}{3}$,
∵点C在x轴的正半轴上,
∴点C的坐标为($\frac{8\sqrt{3}}{3}$,0);

(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,
∴DE⊥OC,
∵点D为OC的中点,
∴OE=EC,
∵OE⊥AC,
∴∠OCA=45°,
∴OC=OA=8,
∵点C在x轴的正半轴上,
∴点C的坐标为(8,0),
设直线AC的解析式为y=kx+b(k≠0).
将A(0,8),C(8,0)得:
$\left\{\begin{array}{l}{8k+b=0}\\{b=8}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=8}\end{array}\right.$.
∴直线AC的解析式为y=-x+8.

点评 此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,抛物线y=x2+bx-c与x轴交A(-1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求抛物线及直线AC的函数表达式;
(2)点M是线段AC上的点(不与A,C重合),过M作MF∥y轴交抛物线于F,若点M的横坐标为m,请用m的代数式表示MF的长;
(3)在(2)的条件下,连接FA、FC,是否存在m,使△AFC的面积最大?若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.把角度21.3°化成度、分、秒的形式:21°18′.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若BC=4,AB=3$\sqrt{3}$,BE=3,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中随机抽取若干个学生进行调查,绘制出了两幅不完整的统计图,如图所示,请你根据图中信息解答下列问题:
(1)共抽取了多少个学生进行调查?
(2)分别求出B等级的人数和图乙中B等级所占圆心角的度数.
(3)将图甲中的折线统计图补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.如果一条直线与果圆只有一个交点,则这条直线叫做果圆的切线.已知A、B、C、D四点为果圆与坐标轴的交点,E为半圆的圆心,抛物线的解析式为y=x2-2x-3,AC为半圆的直径.
(1)分别求出A、B、C、D四点的坐标;
(2)求经过点D的果圆的切线DF的解析式;
(3)若经过点B的果圆的切线与x轴交于点M,求△OBM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某市射击队甲、乙两名优秀队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请填写表格:
  平均数方差  中位数 命中9环(含9环)以上的环数
 甲 1.2 7
 乙7 5.47.5 3
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差向结合看,甲的成绩好些;
②从平均数和中位数相结合看,乙的成绩好些;
③从平均数和折线统计图走势相结合看,乙的成绩好些;
④如果别的队的选手成绩基本在8环左右,若要选一人参加比赛,你认为应该选乙.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.数学活动--探究特殊的平行四边形.
问题情境?
如图,在四边形ABCD中,AC为对角线,AB=AD,BC=DC.请你添加条件,使它们成为特殊的平行四边形.
提出问题
(1)第一小组添加的条件是“AB∥CD”,则四边形ABCD是菱形.请你证明;
(2)第二小组添加的条件是“∠B=90°,∠BCD=90°”,则四边形ABCD是正方形.请你证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.D、E分别是△ABC的AB、AC边的中点,延长DE至F,使EF=DE,连接CF,则△CEF与四边形BCED的面积之比为(  )
A.1:3B.2:3C.1:4D.2:5

查看答案和解析>>

同步练习册答案