分析 (1)可通过证明∠BAF=∠AED,∠AFB=∠D,证得△ABF∽△EAD;
(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠BAF=∠AED,∠D+∠C=180°,
∵∠AFB+∠BFE=180°,∠BFE=∠C,
∴∠AFB+∠C=180°,
∴∠D=∠AFB,
∴△ABF∽△EAD;
(2)解:∵AB∥CD,BE⊥CD,
∴∠ABE=90°
∵AB=3$\sqrt{3}$,BE=3,
∴在Rt△ABE中,AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\sqrt{{3}^{2}+(3\sqrt{3})^{2}}$=6,
∵△ABF∽△EAD,
∴$\frac{BF}{AD}=\frac{AB}{AE}$,
∴BF=2$\sqrt{3}$.
点评 本题主要考查了三角形的判定和性质,平行四边形的性质,等角的补角相等,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 12和30 | B. | 12和60 | C. | 24和30 | D. | 24和60 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3tan50° | B. | 3sin50° | C. | 3tan40° | D. | 3sin40° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 图象必经过点(-1,2) | B. | 当x>0时,y随x的增大而增大 | ||
| C. | 若x>1,则y<-2 | D. | 图象在第二、四象限内 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com