精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线满足条件:(1)在时, 的增大而增大,在时, 的增大而减小;(2)与轴有两个交点,且两个交点间的距离小于.以下四个结论:①,说法正确的个数有( )个

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】由在时, 的增大而增大,在时, 的增大而减小,可得a>0,对称轴为x=-2;由与轴有两个交点,且两个交点间的距离小于,可得抛物线的图象与x轴的两个交点的横坐标位于-3-1之间, 据条件得图象

观察图象可知,c>0 (当x=-1时,y=a-b+c>0);x=-3时,y=9a-3b+c>0,由对称轴x=-2可得4a=b,所以9a-12a +c>0,即 ;又因抛物线与x轴有两个交点,可知,所以,即可得,所以,综上,正确的结论有②③④,故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线APx轴于点Pp0),交y轴于点A0a),且ap满足

1)求直线AP的解析式;

2)如图1,点P关于y轴的对称点为QR02),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;

3)如图2,点B(﹣2b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCEEFx轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在⊙O上,联结CO并延长交弦AB于点D, ,联结AC、OB,若CD=40,AC=20

(1)求弦AB的长;

(2)求sin∠ABO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(20),点B的坐标为(01),对角线BDx轴平行,若直线ykx+5+2kk≠0)与菱形ABCD有交点,则k的取值范围是(  )

A.B.

C.D.2≤k≤2k≠0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CDCA=CECB.

(1)求证:∠CAE=∠CBD;

(2)若,求证:ABAD=AFAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程

1)求证:无论k取何值,该方程总有实数根;

2)若等腰的一边长,另两边bc恰好是该方程的两个根,求的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,对于任意两点,若点满足,那么称点是点的融合点.

例如:,当点满是时,则点是点的融合点,

1)已知点,请说明其中一个点是另外两个点的融合点.

2)如图,点,点是直线上任意一点,点是点的融合点.

①试确定的关系式.

②若直线轴于点,当为直角三角形时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AEBFAC平分∠BAD,且交BF于点CBD平分∠ABC,且交AE于点D,连接CD,求证:

1ACBD

2)四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.

(1)一天中制衣所获利润P是多少(用含x的式子表示);

(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.

(3)一天当中安排多少名工人制衣时,所获利润为11806?

查看答案和解析>>

同步练习册答案