精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(20),点B的坐标为(01),对角线BDx轴平行,若直线ykx+5+2kk≠0)与菱形ABCD有交点,则k的取值范围是(  )

A.B.

C.D.2≤k≤2k≠0

【答案】B

【解析】

依据直线y=kx+5+2k即可得到直线y=kx+5+2kk≠0)经过定点P-25),再根据直线PD的解析式为,直线PB的解析式为y=-2x+1,直线y=kx+5+2kk≠0)与菱形ABCD有交点,即可得到k的取值范围.

如图,

在直线ykx+5+2kk≠0)中,令x=﹣2,则y5

∴直线ykx+5+2kk≠0)经过定点P(﹣25),

由菱形ABCD的顶点A的坐标为(20),点B的坐标为(01),

可得C22),D41),

∴易得直线PD的解析式为,直线PB的解析式为y=﹣2x+1

∵直线ykx+5+2kk≠0)与菱形ABCD有交点,

k的取值范围是

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD交于点M,点FAD上,AF=6cm,BF=12cm,FBM=CBM,点EBC的中点,若点P1cm/s秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动__秒时,以P、Q、E、F为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB分别交xy轴于点AB,直线BC分别交xy轴于点CB,点A的坐标为(20),∠ABO=30°,且AB⊥BC

1)求直线BCAB的解析式;

2)将点B沿某条直线折叠到点O,折痕分别交BCBA于点ED,在x轴上是否存在点F,使得点DEF为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列命题:

①在直角三角形ABC中,已知两边长为34,则第三边长为5;

②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;

③△ABC中,若∠A:B:C=1:5:6,则ABC是直角三角形;

④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.

其中,正确命题的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有19张硬纸板,裁剪时张用A方法,其余用B方法。

1)用的代数式分别表示裁剪出的侧面和底面的个数;

2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点分别在BCCD上,下列结论:

1BE=DF;(2)∠AEB=75°;(3BE+DF=EF;(4

其中正确的序号是____________(把你认为正确的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线满足条件:(1)在时, 的增大而增大,在时, 的增大而减小;(2)与轴有两个交点,且两个交点间的距离小于.以下四个结论:①,说法正确的个数有( )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,将正方形ABOD放在平面直角坐标系中,O是坐标原点,点D的坐标为(23),

1)点B的坐标为

2)若点P为对角线BD上的动点,作等腰直角三角形APE,使∠PAE90°,如图②,连接DE,则BPDE的关系(位置与数量关系)是 ,并说明理由;

3)在(2)的条件下,再作等边三角形APF,连接EFFD,如图③,在 P点运动过程中当EF取最小值时,此时∠DFE °

4)在(1)的条件下,点 M x 轴上,在平面内是否存在点N,使以 BDMN为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°DBC的中点,EAD的中点,过点AAFBCBE的延长线于点F

1)求证:四边形ADCF是菱形;

3)若AC6AB8,求菱形ADCF的面积.

查看答案和解析>>

同步练习册答案