精英家教网 > 初中数学 > 题目详情
10.解方程$\frac{1}{2}${x-$\frac{1}{2}$[x-$\frac{1}{4}$(x-$\frac{2}{3}$)-$\frac{3}{2}$]}=x+$\frac{3}{4}$.

分析 去括号、去分母、移项、合并同类项、系数化为1,

解答 解:$\frac{1}{2}${x-$\frac{1}{2}$[x-$\frac{1}{4}$(x-$\frac{2}{3}$)-$\frac{3}{2}$]}=x+$\frac{3}{4}$,
x-$\frac{1}{2}$[x-$\frac{1}{4}$(x-$\frac{2}{3}$)-$\frac{3}{2}$]=2x+$\frac{3}{2}$,
-$\frac{1}{2}$[x-$\frac{1}{4}$(x-$\frac{2}{3}$)-$\frac{3}{2}$]=x+$\frac{3}{2}$,
x-$\frac{1}{4}$(x-$\frac{2}{3}$)-$\frac{3}{2}$=-2x-3,
x-$\frac{1}{4}$x+$\frac{1}{6}$-$\frac{3}{2}$=-2x-3,
12x-3x+2-18=-24x-36,
33x=-20,
x=-$\frac{20}{33}$.

点评 考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,已知△ABC,△DCE是两个全等的等腰三角形,底边BC、CE在同一直线上,且AB=$\sqrt{2}$,BC=1,BD与AC交于点P.
(1)求证:△BED∽△DEC;
(2)求△DPC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,Rt△ABC中,∠C=90°,AC=4,BC=3,以△ABC的一边为边画等腰三角形,使它的第三个顶点在△ABC的其他边上.请在图①、②、③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,且在图中标明所画等腰三角形的腰长.(不要求尺规作图)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解下列方程:
(1)$\frac{3}{4}$x=1-$\frac{1}{5}$x
(2)$\frac{x-3}{0.3}$-$\frac{x+1}{0.5}$=1.2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.解关于x的方程x+$\frac{ab}{x}$=a+b的根为:x=a或x=b,如①x+$\frac{2}{x}$=3的根为x=1或x=2;②x+$\frac{6}{x}$=5的根为x=2或x=3,求关于x的方程x+$\frac{{n}^{2}+n}{x-3}$=2n+4(n为正整数)的根,你的答案是:n+3或n+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,⊙O交x轴于A,B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并证明;
(2)设点D的坐标为(-6,12),C的坐标为(10,0),试求MC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$+$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$+$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$+…+$\sqrt{1+\frac{1}{201{2}^{2}}+\frac{1}{201{3}^{2}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.?ABCD中,E、F分别是CD、AD边上的点,且AE=CF,AE,CF交于点P,求证:PB平分∠APC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如果一个角的补角是110°,则这个角的余角的度数是(  )
A.30°B.20°C.70°D.110°

查看答案和解析>>

同步练习册答案