精英家教网 > 初中数学 > 题目详情
18.解下列方程:
(1)$\frac{3}{4}$x=1-$\frac{1}{5}$x
(2)$\frac{x-3}{0.3}$-$\frac{x+1}{0.5}$=1.2.

分析 (1)将方程两边都乘以分母的最小公倍数20,去分母后依次移项、合并同类项、系数化为1可得;
(2)先将方程中得分母化为整数,再按照解方程的基本步骤求解即可.

解答 解:(1)去分母,得:15x=20-4x,
移项,得:15x+4x=20,
合并同类项,得:19x=20,
系数化为1,得:x=$\frac{20}{19}$;
(2)将方程分母化为整数,得:$\frac{10x-30}{3}$-$\frac{10x+10}{5}$=1.2,
去分母,得:5(10x-30)-3(10x+10)=18,
去括号,得:50x-150-30x-30=18,
移项,得:50x-30x=18+150+30,
合并同类项,得:20x=198,
系数化为1,得:x=$\frac{99}{10}$.

点评 本题主要考查解一元一次方程的能力,对于带分母的方程:去分母时,方程两端同乘各分母的最小公倍数,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:
(1)本次调查的学生共有150人,a=40,并将图1补充完整;
(2)某班喜欢“跑步”的学生有5人,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图所示,四边形OABC是正方形,边长为4,点A、C分别在x轴、y轴的正半轴上,点P在OA上,且P点的坐标为(3,0),Q是OB上一动点,则PQ+AQ的最小值为(  )
A.5B.$\sqrt{10}$C.4D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知△ABC纸片
(1)如图甲,将△ABC纸片折叠,使C落在三角形的内部,求证:∠ADC+∠BEC=2∠C;
(2)如图乙,将△ABC纸片折叠,使C落在三角形的外部,(1)中的结论还成立吗?若不成立,直接写出∠ADC、∠BEC、∠C之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与AB交于点F.求证:EF=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解下列分式方程:
(1)$\frac{4x}{x-2}$-1=$\frac{3}{2-x}$;     (2)$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程$\frac{1}{2}${x-$\frac{1}{2}$[x-$\frac{1}{4}$(x-$\frac{2}{3}$)-$\frac{3}{2}$]}=x+$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若a=$\sqrt{2}$,b=$\sqrt{7}$-$\sqrt{3}$,c=$\sqrt{6}$-$\sqrt{2}$,则a,b,c的大小关系是(  )
A.c<a<bB.b<c<aC.c<b<aD.b<a<c

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.矩形ABCD中,AB=3,BC=4,如果分别以A、C为圆心的两圆外切,点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围是8<r<9或1<r<2.

查看答案和解析>>

同步练习册答案