【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);
(2)连接AP,若AP平分∠CAB,求∠B的度数.
科目:初中数学 来源: 题型:
【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图 1,在△ABC 中,∠ABC 的平分线 BF 交 AC 于 F, 过点 F 作 DF∥BC, 求证:BD=DF.
(2)如图 2,在△ABC 中,∠ABC 的平分线 BF 与∠ACB 的平分线 CF 相交于 F,过点 F 作 DE∥BC,交直线 AB 于点 D,交直线 AC 于点 E.那么 BD,CE,DE 之间存在什么关系?并证明这种关系.
(3)如图 3,在△ABC 中,∠ABC 的平分线 BF 与∠ACB 的外角平分线 CF 相交于 F,过点 F 作 DE∥BC,交直线 AB 于点D,交直线 AC 于点 E.那么 BD,CE,DE 之间存在什么关系?请写出你的猜想.(不需证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是( )
A、5cm B、6cm C、(6-)cm D、(3+)cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m).
参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有_______人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;
(2)请补全条形统计图;
(3)若该中学共有学生1800人,请根据上述调查结果,估计该中学学生中对校园安全知识 达到“了解”和“基本了解”程度的总人数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,A点坐标是(﹣2,1),B点坐标(1,n);
(1)求出k,b,m,n的值;
(2)求△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)如图 1,在四边形 ABCD 中,添加一个条件使得四边形 ABCD 是“等邻边四边形”.请写出你添加的一个条件.
(2)小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由.
(3)如图 2,小红作了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将 Rt△ABC 沿∠ABC 的平分线 BB′方向平移得到△A′B′C′,连结 AA′, BC′.小红要使得平移后的四边形 ABC′A′是“等邻边四边形”,应平移多少距离(即线段 B′B 的长)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市政规划出一块矩形土地用于某项目开发,其中,设计分区如图所示,为矩形内一点,作于点交于点,过点作交于点,其中丙区域用于主建筑区,其余各区域均用于不同种类绿化.
若点是的中点,求的长;
要求绿化占地面积不小于,规定乙区域面积为
①若将甲区域设计成正方形形状,能否达到设计绿化要求?请说明理由;
②若主建筑丙区域不低于乙区域面积的,则的最大值为 (请直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com