精英家教网 > 初中数学 > 题目详情

【题目】1)如图 1,在ABC 中,∠ABC 的平分线 BF AC F 过点 F DFBC 求证:BD=DF

2)如图 2,在ABC 中,∠ABC 的平分线 BF 与∠ACB 的平分线 CF 相交于 F,过点 F DEBC,交直线 AB 于点 D,交直线 AC 于点 E.那么 BDCEDE 之间存在什么关系?并证明这种关系.

3)如图 3,在ABC 中,∠ABC 的平分线 BF 与∠ACB 的外角平分线 CF 相交于 F,过点 F DEBC,交直线 AB 于点D,交直线 AC 于点 E.那么 BDCEDE 之间存在什么关系?请写出你的猜想.(不需证明)

【答案】1)见详解;(2BD+CEDE,证明过程见详解;(3BDCEDE,证明过程见详解

【解析】

1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;

2)与(1)证明过程类似,求出BDDFEFCE,即可得出结论;

3)与(1)证明过程类似,求出BDDFEFCE,即可得出结论.

解:(1)∵BF平分∠ABC

∴∠ABF=∠CBF

DFBC

∴∠DFB=∠CBF

∴∠DFB=∠DBF

BDDF

2BD+CEDE

理由是:∵BF平分∠ABC

∴∠ABF=∠CBF

DFBC

∴∠DFB=∠CBF

∴∠DFB=∠DBF

BDDF

同理可证:CEEF

DEDF+EF

BD+CEDE

3BDCEDE

理由是:∵BF平分∠ABC

∴∠ABF=∠CBF

DFBC

∴∠DFB=∠CBF

∴∠DFB=∠DBF

BDDF

同理可证:CEEF

DEDFEF

BDCEDE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点EF在边AD上,AF=DE,连接BFCE

1)求证:∠CBF=BCE

2)若点GMN在线段BFBCCE上,且 FG=MN=CN.求证:MG=NF

3)在(2)的条件下,当∠MNC=2BMG时,四边形FGMN是什么图形,证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=的图象经过点(﹣12),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,ACx轴交于点D,当时,则点C的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:矩形,点的延长线上,连接,且的平分线于点

1)如图1,求的大小;

2)如图2,过点的延长线于点,求证:

3)如图3,在(2)的条件下,于点,点的中点,连接于点,点上,且,连接,且.延长于点,连接,若的周长与的周长的差为2,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四边形EFGH是菱形.其中正确的个数是 ( )

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别是不等边ABC(ABBCAC互不相等)的边ABAC的中点.点OABC所在平面上的动点,连接OBOC,点GF分别是OBOC的中点,顺次连接点DGFE.

(1)如图,当点OABC的内部时,求证:四边形DGFE是平行四边形;

(2)若四边形DGFE是菱形,则OABC应满足怎样的数量关系?(直接写出答案,不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.

(1)、如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?

(2)、点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°.

(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);

(2)连接AP,若AP平分∠CAB,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:直线与直线互为友好直线,如:直线互为友好直线

1)点在直线友好直线上,则________

2)直线上的点又是它的友好直线上的点,求点的坐标;

3)对于直线上的任意一点,都有点在它的友好直线上,求直线的解析式.

查看答案和解析>>

同步练习册答案