【题目】(1)如图 1,在△ABC 中,∠ABC 的平分线 BF 交 AC 于 F, 过点 F 作 DF∥BC, 求证:BD=DF.
(2)如图 2,在△ABC 中,∠ABC 的平分线 BF 与∠ACB 的平分线 CF 相交于 F,过点 F 作 DE∥BC,交直线 AB 于点 D,交直线 AC 于点 E.那么 BD,CE,DE 之间存在什么关系?并证明这种关系.
(3)如图 3,在△ABC 中,∠ABC 的平分线 BF 与∠ACB 的外角平分线 CF 相交于 F,过点 F 作 DE∥BC,交直线 AB 于点D,交直线 AC 于点 E.那么 BD,CE,DE 之间存在什么关系?请写出你的猜想.(不需证明)
【答案】(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解
【解析】
(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;
(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;
(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论.
解:(1)∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵DF∥BC,
∴∠DFB=∠CBF,
∴∠DFB=∠DBF,
∴BD=DF;
(2)BD+CE=DE,
理由是:∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵DF∥BC,
∴∠DFB=∠CBF,
∴∠DFB=∠DBF,
∴BD=DF;
同理可证:CE=EF,
∵DE=DF+EF,
∴BD+CE=DE;
(3)BD﹣CE=DE.
理由是:∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵DF∥BC,
∴∠DFB=∠CBF,
∴∠DFB=∠DBF,
∴BD=DF;
同理可证:CE=EF,
∵DE=DF﹣EF,
∴BD﹣CE=DE.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.
(1)求证:∠CBF=∠BCE;
(2)若点G、M、N在线段BF、BC、CE上,且 FG=MN=CN.求证:MG=NF;
(3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,当时,则点C的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:矩形,点在的延长线上,连接,,且,的平分线交于点.
(1)如图1,求的大小;
(2)如图2,过点作交的延长线于点,求证:;
(3)如图3,在(2)的条件下,交于点,点为的中点,连接交于点,点在上,且,连接,且.延长交于点,连接,若的周长与的周长的差为2,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四边形EFGH是菱形.其中正确的个数是 ( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)、如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)、点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);
(2)连接AP,若AP平分∠CAB,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:直线与直线互为“友好直线”,如:直线与互为“友好直线”.
(1)点在直线的“友好直线”上,则________.
(2)直线上的点又是它的“友好直线”上的点,求点的坐标;
(3)对于直线上的任意一点,都有点在它的“友好直线”上,求直线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com