17£®Èçͼ£¬Å×ÎïÏßy=x2+bx+cÓëxÖá½»ÓÚµãA£¬B£¬ÓëyÖá½»ÓÚµãC£¬ÆäÖеãAÔÚyÖáµÄ×ó²à£¬µãCÔÚxÖáµÄÏ·½£¬ÇÒOA=OC=5£®
£¨1£©ÇóÅ×ÎïÏß¶ÔÓ¦µÄº¯Êý½âÎöʽ£»
£¨2£©µãPΪÅ×ÎïÏß¶Ô³ÆÖáÉϵÄÒ»¶¯µã£¬µ±PB+PCµÄÖµ×îСʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©Ìõ¼þÏ£¬µãEΪÅ×ÎïÏߵĶԳÆÖáÉϵ͝µã£¬µãFΪÅ×ÎïÏßÉϵ͝µã£¬ÒÔµãP¡¢E¡¢FΪ¶¥µã×÷ËıßÐÎPEFM£¬µ±ËıßÐÎPEFMΪÕý·½ÐÎʱ£¬ÇëÖ±½Óд³ö×ø±êΪÕûÊýµÄµãMµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬¿ÉµÃA£¨-5£¬0£©£¬C£¨0£¬-5£©£®°ÑµãA£¬CµÄ×ø±ê´úÈëy=x2+bx+c£¬µÃµ½¹ØÓÚb¡¢cµÄ¶þÔªÒ»´Î·½³Ì×飬½â·½³Ì×é¼´¿ÉÇó³öÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©ÀûÓÃÅä·½·¨Çó³öÅ×ÎïÏߵĶԳÆÖáÊÇÖ±Ïßx=-2£®ÓÉÅ×ÎïÏßy=x2+4x-5ÓëxÖá½»ÓÚµãA£¬B£¬µÃ³öµãA£¬B¹ØÓÚÖ±Ïßx=-2¶Ô³Æ£®Á¬½áAC£¬½»¶Ô³ÆÖáÓÚµãP£¬¸ù¾ÝÁ½µãÖ®¼äÏß¶Î×î¶Ì¿ÉÖª´ËʱPB+PCµÄÖµ×îС£®ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßACµÄ½âÎöʽΪy=-x-5£¬°Ñx=-2´úÈ룬Çó³öy=-3£¬½ø¶øµÃ³öµãPµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©Ìõ¼þÏ£¬µãPµÄ×ø±êΪ£¨-2£¬-3£©£®ÉèF£¨x£¬x2+4x-5£©£¬¸ù¾ÝÕý·½ÐεÄÐÔÖʿɵÃE£¨-2£¬x2+4x-5£©£¬M£¨x£¬-3£©£¬PM=PE£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽÁгö·½³Ì|x+2|=|x2+4x-5+3|£¬½â·½³Ì¼´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬¿ÉµÃA£¨-5£¬0£©£¬C£¨0£¬-5£©£®
¡ßÅ×ÎïÏßy=x2+bx+c¹ýµãA£¬µãC£¬
¡à$\left\{\begin{array}{l}{25-5b+c=0}\\{c=-5}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=4}\\{c=-5}\end{array}\right.$£¬
¡àÅ×ÎïÏß¶ÔÓ¦µÄº¯Êý½âÎöʽΪy=x2+4x-5£»

£¨2£©¡ßy=x2+4x-5=£¨x+2£©2-9£¬
¡à¶Ô³ÆÖáÊÇÖ±Ïßx=-2£®
¡ßÅ×ÎïÏßy=x2+4x-5ÓëxÖá½»ÓÚµãA£¬B£¬
¡àµãA£¬B¹ØÓÚÖ±Ïßx=-2¶Ô³Æ£®
Á¬½áAC£¬½»¶Ô³ÆÖáÓÚµãP£¬´ËʱPB+PCµÄÖµ×îС£®
ÉèÖ±ÏßACµÄ½âÎöʽΪy=mx+n£¬
Ôò$\left\{\begin{array}{l}{-5m+n=0}\\{n=-5}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=-1}\\{n=-5}\end{array}\right.$£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=-x-5£¬
µ±x=-2ʱ£¬y=-3£¬
¡àµãPµÄ×ø±êΪ£¨-2£¬-3£©£»

£¨3£©ÔÚ£¨2£©Ìõ¼þÏ£¬µãPµÄ×ø±êΪ£¨-2£¬-3£©£®
ÉèF£¨x£¬x2+4x-5£©£¬
¡ßËıßÐÎPEFMΪÕý·½ÐΣ¬
¡àE£¨-2£¬x2+4x-5£©£¬M£¨x£¬-3£©£¬PM=PE£¬
¡à|x+2|=|x2+4x-5+3|£¬
¡àx2+4x-2=x+2£¬»òx2+4x-2=-x-2£¬
ÕûÀíµÃx2+3x-4=0£¬»òx2+5x=0£¬
½âµÃx1=-4£¬x2=1£¬x3=0£¬x4=-5£¬
¡àM£¨-4£¬-3£©»òM£¨1£¬-3£©»òM£¨0£¬-3£©»òM£¨-5£¬-3£©£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬ÆäÖÐÉæ¼°µ½ÀûÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏßÓëÖ±ÏߵĽâÎöʽ£¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬Öá¶Ô³ÆµÄÐÔÖÊ£¬Õý·½ÐεÄÐÔÖÊ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®ÀûÓÃÊýÐνáºÏÓë·½³Ì˼ÏëÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÓÐÒ»¿éÈý½ÇÐÎÍÁµØ£¬ÂÏүү׼±¸½«Õâ¿éÍÁµØ·Ö³ÉÃæ»ýÏàµÈµÄËÄ¿é¸øËûµÄËĸö¶ù×Ó¸ûÖÖ£¬ÇëÄã°ïËûÖÆ¶¨³öÁ½ÖÖ»®·Ö·½°¸¹©ËûÑ¡Ôñ£¨»­Í¼ËµÃ÷£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®·½³Ì×é$\left\{\begin{array}{l}{x-2y=1}\\{x+{y}^{2}=4}\end{array}\right.$µÄ½âÊÇ$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-5}\\{y=-3}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{x}{2x+3}$¡Â$\frac{3}{4{x}^{2}-9}$•£¨1+$\frac{3}{2x-3}$£©£¬ÆäÖÐx=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆËãÏÂÁи÷Ìâ
£¨1£©${£¨\frac{1}{3}£©}^{-2}$+£¨-1£©2017-£¨-3£©0
£¨2£©4a2b•£¨-3b2c£©¡Â£¨2ab3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÕý±ÈÀýº¯Êýy=2xÓëÒ»´Îº¯Êýy=-x+aµÄͼÏó½»ÓÚµãA£¨1£¬b£©£¬½«´ËÒ»´Îº¯ÊýµÄͼÏó½øÐÐÆ½ÐÐÒÆ¶¯£¬Æ½ÒƺóͼÏó¹ýµãB£¨2£¬7£©ºÍA£¨3£¬c£©£¬Ôòc=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㣺
£¨1£©£¨-2£©-2¡Á50
£¨2£©£¨a+b£©2-£¨a-b£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÓÐ3ÕŲ»Í¸Ã÷µÄ¿¨Æ¬£¬³ýÕýÃæÐ´Óв»Í¬µÄÊý×ÖÍ⣬ÆäËû¾ùÏàͬ£¬½«Õâ3ÕÅ¿¨Æ¬±³ÃæÏòÉÏÏ´ÔÈ£¬´ÓÖÐËæ»ú³éȡһÕÅ£¬¼ÇÏÂÊý×Öºó·Å»Ø£»ÖØÐÂÏ´ÔȺóÔÙ´ÓÖÐËæ»ú³éȡһÕÅ£¬½«³éÈ¡µÄµÚÒ»ÕÅ¡¢µÚ¶þÕÅ¿¨Æ¬ÉϵÄÊý×Ö·Ö±ð×÷ΪʮλÊý×ֺ͸öλÊý×Ö×é³ÉÁ½Î»Êý£®
£¨1£©ÇëÓû­Ê÷״ͼ£¨»òÁÐ±í£©µÄ·½·¨ÁгöÕâ¸öÁ½Î»ÊýËùÓпÉÄܵÄÊýÖµ£»
£¨2£©ÇóÕâ¸öÁ½Î»ÊýÄܱ»3Õû³ýµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬CDÓë¡ÑOÏàÇÐÓÚµãC£¬ÓëABµÄÑÓ³¤Ïß½»ÓÚD£®
£¨1£©ÇóÖ¤£º¡÷ADC¡×¡÷CDB£»
£¨2£©ÈôAC=2£¬AB=$\frac{3}{2}$CD£¬Çó¡ÑO°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸