精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,反比例函数(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k= .

【答案】3
【解析】解:连接OB,如图所示:

∵四边形OABC是矩形,
∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,
∵D、E在反比例函数y=(x>0)的图象上,
∴△OAD的面积=△OCE的面积,
∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,
∵BE=2EC,∴△OCE的面积=△OBE的面积=
∴k=3;
所以答案是:3.
【考点精析】认真审题,首先需要了解比例系数k的几何意义(几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一坐标系中的图象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:
思路一 如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣
思路二 利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣
思路三 在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四 …
请解决下列问题(上述思路仅供参考).

(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;

(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数a,b满足a﹣b=1,a2﹣ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 , 并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3)

(1)求抛物线的函数表达式.
(2)求直线BC的函数表达式和∠ABC的度数.
(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=3 ﹣3,CD∥AB,并与弧AB相交于点M、N.
(1)求线段OD的长;
(2)若sin∠C= ,求弦MN的长;
(3)在(2)的条件下,求优弧MEN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABCRtADE,其中∠ACB=AED=90°.

(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;

(2)改变ADE的位置,使DEBC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EFDE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列解答中,填写适当的理由或数学式:

(1)∵ ∠ABD=∠CDB, ( 已知

. (

(2)∵ ∠ADC+∠DCB=180°, ( 已知

. (

(3)∵ ADBE, ( 已知

∴ ∠DCE=∠ . (

(4)∵ , ( 已知

∴ ∠BAE=∠CFE. (

查看答案和解析>>

同步练习册答案