精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点分别在边上,且

1)求证:是等腰三角形.

2)若为等边三角形,求的度数.

【答案】1)证明见解析;(2)∠A=60°

【解析】

1)证明△DBE≌△CEF得到DE=EF,即可得到结论;

2)由已知得到∠DEF60°,根据外角的性质及△DBE≌△CEF得到∠DEF+CEF=B+BDE,求得∠B =DEF=60°,再根据AB=AC即可求出的度数.

1)证明:∵ABAC,∴∠B=∠C

在△DBE 和△CEF 中,

∴△DBE≌△ECF

DEEF

∴△DEF 是等腰三角形.

2)∵△DEF为等边三角形,

∴∠DEF60°.

∵△DBE≌△CEF,∴∠BDE=∠CEF.

∵∠DEF+CEF=B+BDE,∴∠B =DEF=60°.

∴∠C=B=60°.

∴∠A=180°-B-C=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,在等腰ABCADE中,AB=AC,AD=AE,且∠BAC=DAE=120°.

(1)求证:ABD≌△ACE;

(2)把ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断PMN的形状,并说明理由;

(3)在(2)中,把ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出PMN周长的最小值与最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC=90°,AC的垂直平分线分别与AC、BCAB的延长线相交于点D,E,F,且BF=BC,O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD、FH.

(1)求证:△HGF∽△HFB;

(2)求证:BD=EF;

(3)连接HE,若AB=2,求△HEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15.

1)求每辆大客车和每辆小客车的乘客座位数;

2)由于最后参加活动的人数增加了20,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五一期间小明和小丽相约到苏州乐园游玩,小丽乘私家车从上海出发30分钟后,小明乘坐火车从上海出发,先到苏州北站,然后再乘出租车去游乐园(换乘时间忽略不计),两人恰好同时到达苏州乐园,他们离上海的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象信息解决下面问题:

(1)本次火车的平均速度_________千米/小时?

(2)当小明到达苏州北站时,小丽离苏州乐园的距离还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB的垂直平分线分别交ABBC于点DE,∠B=30°,BAC=80°,BC+AC=12cm,①求∠CAE的度数;②求△AEC的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.

(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?

(2)若单独租用一台车,租用哪台车合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.

Ⅰ)若∠ABC=29°,求∠D的大小;

Ⅱ)若∠D=30°,BAO=15°,作CEAB于点E,求:

BE的长;

②四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图、图、图,在矩形中,边上的一点,以为边作平行四边形,使点的对边上,

如图,试说明:平行四边形的面积与矩形的面积相等;

如图,若平行四边形是矩形,交于点,试说明:四点在同一个圆上;

如图,若,平行四边形是正方形,且的中点,于点,连接,判断以为直径的圆与直线的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案