精英家教网 > 初中数学 > 题目详情
如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.
(1)求a,k的值;
(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;
(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.
考点:二次函数综合题
专题:几何综合题
分析:(1)先求出直线y=-3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x-2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;
(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3-m)2,由AQ=BQ,得到方程1+m2=4+(3-m)2,解方程求出m=2,即可求得Q点的坐标;
(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,-1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.
解答:解:(1)∵直线y=-3x+3与x轴、y轴分别交于点A、B,
∴A(1,0),B(0,3).
又∵抛物线抛物线y=a(x-2)2+k经过点A(1,0),B(0,3),
a+k=0
4a+k=3
,解得
a=1
k=-1

故a,k的值分别为1,-1;

(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.
在Rt△AQF中,AQ2=AF2+QF2=1+m2
在Rt△BQE中,BQ2=BE2+EQ2=4+(3-m)2
∵AQ=BQ,
∴1+m2=4+(3-m)2
∴m=2,
∴Q点的坐标为(2,2);

(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
又∵对称轴x=2是AC的中垂线,
∴M点与顶点P(2,-1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).
此时,MF=NF=AF=CF=1,且AC⊥MN,
∴四边形AMCN为正方形.
在Rt△AFN中,AN=
AF2+NF2
=
2
,即正方形的边长为
2
点评:本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在边长为1的小正方形构成的网格中,半径为1的⊙O与大正方形的四个边相切,则图中阴影部分两个小扇形的面积之和为
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

设y=kx,是否存在实数k,使得代数式(x2-y2)(4x2-y2)+3x2(4x2-y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:
自选项目人数频率
立定跳远90.18
三级蛙跳12a
一分钟跳绳80.16
投掷实心球b0.32
推铅球50.10
合计501
(1)求a,b的值;
(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;
(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中
有一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.
(1)当t=
1
2
秒时,则OP=
 
,S△ABP=
 

(2)当△ABP是直角三角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+
3
2
交x轴正半轴于点B及点A(-1,0),交y轴于点C,AB=4.
(1)求抛物线的解析式;
(2)点D在抛物线y=ax2+bx+
3
2
在第一象限的部分上(CD与x轴不平行),△BCD的面积为
3
2
,求点D的坐标;
(3)在(2)的条件下,点P在抛物线y=ax2+bx+
3
2
上,过点P作x轴的垂线,点E为垂足,直线PD交x轴于点F,连接DE,当DE=2DF时,求直线PA与x轴所夹锐角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D处用高1.5m的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔前进224m到达E处,又测得电视塔顶端A的仰角为60°.求电视塔的高度AB.(
3
取1.73,结果精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,在求值:(
6
x-1
+
4
x2-1
)÷
3x+2
x-1
,其中x=2.

查看答案和解析>>

同步练习册答案