【题目】如图,直线y=﹣2x+6与x轴,y轴分别交A,B两点,点A关于原点O的对称点是点C,动点E从A出发以每秒1个单位的速度运动到点C,点D在线段OB上满足tan∠DEO=2,过E点作EF⊥AB于点F,点A关于点F的对称点为点G,以DG为直径作⊙M,设点E运动的时间为t秒;
(1)当点E在线段OA上运动,t= 时,△AEF与△EDO的相似比为1:;
(2)当⊙M与y轴相切时,求t的值;
(3)若直线EG与⊙M交于点N,是否存在t使NG=,若存在,求出t的值;若不存在,说明理由.
【答案】(1);(2)t=或5;(3)存在,t=或或.
【解析】
(1)先求直线与坐标轴的交点坐标,再证△AEF∽△EDO∽△ABO,由△AEF与△EDO的相似比为1:,即可求得t的值;
(2)由⊙M与y轴相切可知:DG⊥y轴,分两种情况:0≤t≤3或3<t≤6,分别由D、G的纵坐标相等建立方程求解即可;
(3)分三种情况:0≤t≤或<t≤3或3<t≤6,分别建立方程求解即可.
解:(1)在y=﹣2x+6中,令x=0,得:y=6,
令y=0,得:﹣2x+6=0,
解得:x=3,
∴A(3,0),B(0,6),C(﹣3,0)
∴OA=3,OB=6,AB=3,AE=t,OE=3﹣t,
∴tan∠BAO==2
∵tan∠DEO=2
∴∠BAO=∠DEO
∵EF⊥AB
∴∠AFE=∠DOE=90°
∴△AEF∽△EDO∽△ABO
,即
∴AF=t;
∵△AEF与△EDO的相似比为1:,
∴,即OE=AF
∴3﹣t=×t,
解得:t=;
故答案为:t=;
(2)∵⊙M与y轴相切
∴DG⊥y轴
当0≤t≤3时,
∵tan∠DEO=2
∴
∴
∵,△AEF∽△ABO
∴
∴
∵点A、G关于点F对称
∴
∴
将代入中,得,
解得,
∴G(3﹣t,t),D(0,6﹣2t),
∴t=6﹣2t,解得:t=;
当3<t≤6时,同理得G(3﹣t,t),D(0,2t﹣6),
∴t=2t﹣6,解得:t=5,
综上所述,当⊙M与y轴相切时,t=或5;
(3)存在.
当0≤t≤时,G(3﹣t,t),D(0,6﹣2t),
∵点A关于点F的对称点为点G,EF⊥AB
∴EG=EA=t
∵∠OEG=∠OAB+∠EGA=2∠OAB,∠OED=∠OAB
∴∠GED=∠OED=∠OAB
∵DG为直径
∴∠DNG=∠DNE=∠DOE=90°,DE=DE
∴△DEN≌△DEO(AAS)
∴EN=OE=3﹣t,NG=EN﹣EG=3﹣t﹣t=3﹣2t,
∴3﹣2t=,
解得:t=,
当<t≤3时,NG=EG﹣EN=t﹣(3﹣t)=2t﹣3
∴2t﹣3=,
解得:t=;
当3<t≤6时,如图2,连接DN,过G作GH⊥x轴于H,
∵DG是直径,
∴∠DNG=∠DNE=90°,
∵∠DMN=∠EMO
∴△DMN∽△EMO
∴∠MDN=∠OEM
∵GH∥y轴
∴,即,
由(2)得,
∵轴,
∴ ,,
∴,
∴DM=OD﹣OM=2(t﹣3)﹣(t﹣3)=(t﹣3)
∵tan∠OEM=
∴EM=OE=(t﹣3),
∴sin∠OEM===sin∠MDN=
∴MN=×(t﹣3)=(t﹣3)
∴NG=EG﹣EM﹣MN=t﹣(t﹣3)﹣(t﹣3)=﹣t,
∴,
解得:t=;
综上所述,t=或或.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;
(1)写出点D的坐标 ;
(2)若点E为x轴上一点,且S△AOE=,
①求点E的坐标;
②判断△AOE与△AOD是否相似并说明理由;
(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为斜边AB上的一点,以OA为半径的与BC切于点D,与AC交于点E,连接AD.
(1)求证:AD平分
(2)若,,求阴影部分的面积.(结果保留)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣2与x轴、y轴分别交于点A、B,过点C(2,﹣1)作直线l∥y轴,点M为直线l上的一个动点,以点M为圆心,MO为半径作圆,当⊙M与直线AB相切时,点M的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国古代算书《算法统宗》中有这样一道题:甲赶群羊逐草茂,乙拽肥羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半(注:四分之一的意思)群,得你一只来方凑,玄机奥妙谁参透?大意是说:牧羊人赶着一群羊去寻找草长得茂盛的地方放牧,有一个过路人牵着1只肥羊从后面跟了上来,他对牧羊人说你赶的这群羊大概有100只吧?牧羊人答道:如果这一群羊加上1倍,再加上原来羊群的一半,又加上原来这群羊的四分之一,连你牵着的这只肥羊也算进去,才刚好满100只你知道牧羊人放牧的这群羊一共有多少只吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一交点为E,其顶点为F.
(1)求a、c的值;
(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,交AC于F.
(1)如图(1),若BD=BA,求证:∠BAD=∠C+∠CAD;
(2)如图(2),若 BD=4DC,取AB 的中点G,连接CG交AD于M,求证:①GM=2MC;②.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com