【题目】在一次研究性学习活动中,同学们看到了工人师傅在木板上画一个直角三角形的过程(如图所示):画线段AB,过点A任作一条直线l,以点A为圆心,以AB长为半径画弧,与直线l相交于两点C、D,连接BC和BD.则△BCD就是直角三角形.
(1)请你说明△BCD是直角三角形的道理;
(2)请利用上述方法作一个直角三角形,使其中一个锐角为60°(不写作法,保留作图
痕迹,在图中注明60°的角).
【答案】(1)见解析;(2)见解析.
【解析】
(1)由作图可知,AB=AC=AD,根据等边对等角可得∠ACB=∠ABC,∠ABD=∠ADB ,然后利用三角形内角和定理可求出∠ABC+∠ABD=90° ,问题得证;
(2)如图所示,画线段EF,分别以点E,F为圆心,以EF的长为半径画弧,两弧相交于点C,连接EC;再以点C为圆心,以EC长为半径画弧,交EC延长线于点G,连接FG.则△EFG就是所求作的直角三角形,其中∠GEF=60°.
(1)由作图可知,AB=AC=AD,
∴∠ACB=∠ABC,∠ABD=∠ADB ,
∵∠ACB+∠ABC+∠ABD+∠ADB=180°,
∴2∠ABC+2∠ABD=180°,
∴∠ABC+∠ABD=90° ,即∠CBD=90°,
∴△BCD是直角三角形;
(2)如图所示:△EFG就是所求作的直角三角形,其中∠GEF=60°.
科目:初中数学 来源: 题型:
【题目】为了了解学生的体能状况,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题:(测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级)
(1)本次抽样调查共抽取多少名学生?
(2)补全条形统计图.
(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.
(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从
某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)
与时间x(分)之间的函数关系如图所示.根据图象信息给出下列说法:
①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;
③若12分钟后只放水,不进水,还要8分钟可以把水放完;
④若从一开始进出水管同时打开需要24分钟可以将容器灌满.
以上说法中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB∥DE,AC∥DF,AC=DF下列条件中,不能判断△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).
(1)求该班的总入数,并补全条形统计图.
(2)求D(泗水)所在扇形的圆心角度数;
(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识背景
当a>0且x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+(当x=时取等号).
设函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.
应用举例
已知函数为y1=x(x>0)与函数y2=(x>0),则当x==2时,y1+y2=x+有最小值为2=4.
解决问题
(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?
(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校计划在如图所示的空地 ABCD 上种植草皮,经测量∠ADC=90°,CD = 6m ,AD = 8m , AB=26m , BC= 24m .
(1)求出空地 ABCD 的面积;
(2)若每种植 1 平方米草皮需要 200 元,问总共需投入多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为4的⊙O中,CD为直径,AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )
A. π B. π C. π D. π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线AB与x轴交于点A(m,0),与y轴交于点B(0,n),且m,n满足:(m+n)2+|n﹣6|=0.
(1)求:①m,n的值;②S△ABO的值;
(2)D为OA延长线上一动点,以BD为直角边作等腰直角△BDE,连接EA,求直线EA与y轴交点F的坐标.
(3)如图2,点E为y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段OA上一动点,试求OM+MN的最小值(图1与图2中点A的坐标相同).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com