精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是⊙O的内接三角形.AE是⊙O的直径,交BC于点G.过点AAFBCAF分别与BC、⊙O交于点DF,连接BECF

1)求证:∠BAE=∠CAF

2)若AB8AC6AG5,求AF的长.

【答案】1)详见解析;(2

【解析】

1)由圆周角定理得出∠ABE=90°,得出∠BAE+BEA=90°,由AFBC得出∠ACD+CAF =90°,由圆周角定理得出∠BEA=ACD,即可得出结论;

2)先证明∠ABC=AFC,∠BAE=∠CAF得△ABG∽△AFC,得到即可得到答案.

解(1)∵AE是⊙O的直径,
∴∠ABE=90°
∴∠BAE+BEA=90°
AFBC
∴∠ADC=90°
∴∠ACD+CAF =90°
又∵∠BEA=ACD
∴∠BAE=CAF

2)∵∠ABC与∠AFC的圆周角

∴∠ABC=AFC

∵∠BAE=∠CAF

∴△ABG∽△AFC

AB8AC6AG5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(11)B(42)C(34)

(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1

(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2

(3)x轴上找一点P,使PAPB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:是长方形纸片ABCD折叠的情况,纸片的宽度AB=8cm,长AD=10cmAD沿点A对折,点D正好落在BC上的M处,AE是折痕.

1)求CM的长;

2)求梯形ABCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在游乐场坐过山车,某一分钟内过山车高度h()与时间t()之间的函数图象如图所示.请结合图象回答:

(1)①当t=41秒时,h的值是多少?并说明它的实际意义;

②过山车所达到的最大高度是多少?

(2)请描述30秒后,高度h()随时间t()的变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1为一艺术拱门,下部为矩形ABCDABAD的长分别为m4m,上部是圆心为O的劣弧CD,∠COD120°.现欲以点B为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2所示.设BC与地面水平线所成的角为,记拱门上的点到地面的距离为h,当h取最大值时,此时________°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果三角形的两个内角∠α∠β满足∠α=2∠β,那么,我们将这样的三角形称为倍角三角形.如果一个等腰三角形是倍角三角形,那么这个等腰三角形的腰长与底边长的比值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.

1)求桥拱所在圆的半径长;

2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα3,求水面上升的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中(如图),已知函数的图像和反比例函数的在第一象限交于A点,其中点A的横坐标是1

1)求反比例函数的解析式;

2)把直线平移后与轴相交于点B,且,求平移后直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位计划购进三种型号的礼品共件,其中型号礼品件,型号礼品比型号礼品多件.已知三种型号礼品的单价如下表:

型号

单价(元/件)

1)求计划购进两种型号礼品分别多少件?

2)实际购买时,厂家给予打折优惠销售(如: 折指原价,在计划总价额不变的情况下,准备购进这批礼品.

①若只购进两种型号礼品,且型礼品件数不超过型礼品的倍,求型礼品最多购进多少件?

②若只购进两种型号礼品,它们的单价分别打折、折,均为整数,且购进的礼品总数比计划多件,求的值.

查看答案和解析>>

同步练习册答案