【题目】如图,四边形ABCD为矩形,AB=4cm,AD=3cm,动点M、N分别从D、B同时出发,都以1cm/秒的速度运动,点M沿DA向点终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP,已知运动的时间为t秒(0<t<3).
(1)当t=1秒时,求出PN的长;
(2)若四边形CDMP的面积为s,试求s与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t使四边形CDMP的面积与四边形ABCD的面积比为3:8,若存在,请求出t的值;若不存在,请说明理由.
(4)在点M、N运动过程中,△MPA能否成为一个等腰三角形?若能,试求出所有t的可能值;若不能,试说明理由.
【答案】(1);(2);(3)存在,;(4)能,当t=1或t= 或t=时,△MPA是等腰三角形.
【解析】
(1)由t=1知BN=1、CN=BC﹣BN=2,证△PNC∽△ABC得,据此可得答案;
(2)延长NP交AD于点Q,则PQ⊥AD,由△PNC∽△ABC得,据此得出PN=4﹣t、PQ=t,根据S四边形CDMP=S△ACD﹣S△AMP可得;
(3)求出矩形ABCD的面积,然后由题意可得关于t的方程,解方程即可求得答案;
(4)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.
(1)当t=1时,BN=1、CN=BC﹣BN=2,
∵PN⊥BC,
∴∠PNC=∠B=90°,
∴PN∥AB,
∴△PNC∽△ABC,
∴,即,
∴PN=;
(2)如图,延长NP交AD于点Q,则PQ⊥AD,
由题意知,DM=BN=t,AM=CN=3﹣t,
∵PN∥AB,
∴△PNC∽△ABC,
∴,即,
解得:PN=(3﹣t)=4﹣t,
∵PQ⊥AD,
∴∠QAB=∠B=∠NQA=90°,
∴四边形ABNQ是矩形,
则AB=QN=4,
∴PQ=QN﹣PN=4﹣(4﹣t)=t,
∴四边形CDMP的面积s=×3×4﹣×(3﹣t)×t=t2﹣2t+6;
(3)∵S矩形ABCD=3×4=12,
∴,
解得:t=,
所以t=时四边形CDMP的面积与四边形ABCD的面积比为3:8;
(4)△MPA能成为等腰三角形,共有三种情况,以下分类说明:
①若PM=PA,
∵PQ⊥MA,
∴四边形ABNQ是矩形,
∴QA=NB=t,
∴MQ=QA=t,
又∵DM+MQ+QA=AD
∴3t=3,即t=1
②若MP=MA,则MQ=3﹣2t,PQ=t,MP=MA=3﹣t,
在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2
∴(3﹣t)2=(3﹣2t)2+(t)2,
解得:t=(t=0不合题意,舍去);
③若AP=AM,
由题意可得:AP=t,AM=3﹣t
∴t=3﹣t,
解得:t=,
综上所述,当t=1或t=或t=时,△MPA是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.
(1)求证:AB是⊙O的直径;
(2)判断DE与⊙O的位置关系,并加以证明;
(3)若⊙O的半径为3,∠BAC=60°,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(﹣3,0),与y轴交于C.
(1)求该抛物线的解析式,并写出抛物线的对称轴;
(2)设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=,求点E的坐标;
(3)若P是直线y=x+1上的一点,P点的横坐标为,M是第二象限抛物线上的一点,当∠MPD=∠ADC时,求M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD的最小夹角∠PDN=18.6°,最大夹角∠MDN=64.5°.请你根据以上数据,帮助小明同学计算出遮阳篷中CD的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,M为AD边上一点,MB平分∠AMC.
(1)如图1,求证:BC=MC;
(2)如图2,G为BM的中点,连接AG、DG,过点M作MN∥AB交DG于点E、交BC于点N.
①求证:AG⊥DG;
②当DGGE=13时,求BM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)如图(2),若B是线段AD上的一个动点(E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①求S与m的函数关系式
②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com