精英家教网 > 初中数学 > 题目详情

【题目】已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示yx的函数图象大致如图所示,则该封闭图形可能是(  )

A.B.C.D.

【答案】A

【解析】

先观察图像得到yx的函数图象分三个部分,则可对有3边以上的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,开始yx的增大而增大,然后yx的减小而减小,则可对D进行判断,从而得到正确选项.

解:yx的函数图象分三个部分,而B选项和C选项中的封闭图形有5条和4条线段,其图象不是三个部分,所以BC选项不正确;D选项中的封闭图形为圆,开始yx的增大而增大,然后yx的减小而减小,所以D选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.

1)求yx的函数关系式,并写出x的取值范围.

2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?

3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加,某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见表:

A型销售数量(台)

B型销售数量(台)

总利润(元)

5

3

950

3

4

900

(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?

(2)该公司计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不多于A型空气净化器的2倍,为使该公司销售完这80台空气净化器后的总利润最大,请你设计相应的进货方案;

(3)已知A型空气净化器的净化能力为200m3/小时,B型空气净化器的净化能力为300m3/小时,某长方体室内活动场地的总面积为200m2,室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,若不考虑空气对流等因素,至多要购买A型空气净化器多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于AB两点,与y轴交于点C0,﹣2),点A的坐标是(20),P为抛物线上的一个动点,过点PPDx轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1

1)求抛物线的函数表达式;

2)若点P在第二象限内,且PEOD,求△PBE的面积.

3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.

①求y关于x的函数关系式;

②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点M为二次函数y=﹣(xb2+4b+1图象的顶点,直线ymx+5分别交x轴正半轴,y轴于点AB

1)判断顶点M是否在直线y4x+1上,并说明理由.

2)如图1,若二次函数图象也经过点AB,且mx+5>﹣(xb2+4b+1,根据图象,写出x的取值范围.

3)如图2,点A坐标为(50),点MAOB内,若点Cy1),Dy2)都在二次函数图象上,试比较y1y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,的直径,点上一点,于点,交于点交于点,点的延长线上一点,且.

1)求证:的切线;

2)求证:

3)若⊙O的半径为的长为,求.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25m,BD=1.5m,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是(  )

A.2mB.2.5mC.2.4mD.2.1m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.

(1)求抛物线的解析式;

(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.

①求点P的坐标;

②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案