精英家教网 > 初中数学 > 题目详情

【题目】从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:

(1)该班学生选择   观点的人数最多,共有   人,在扇形统计图中,该观点所在扇形区域的圆心角是   度.

(2)利用样本估计该校初三学生选择“中技”观点的人数.

(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).

【答案】1A高中观点.30216;(2256人;(3

【解析】

试题(1)全班人数乘以选择“A高中观点的百分比即可得到选择“A高中观点的人数,用360°乘以选择“A高中观点的百分比即可得到选择“A高中的观点所在扇形区域的圆心角的度数;

2)用全校初三年级学生数乘以选择“B中技观点的百分比即可估计该校初三学生选择中技观点的人数;

3)先计算出该班选择就业观点的人数为4人,则可判断有2位女同学和2位男生选择就业观点,再列表展示12种等可能的结果数,找出出现2女的结果数,然后根据概率公式求解.

试题解析:(1)该班学生选择A高中观点的人数最多,共有60%×50=30(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×360°=216°

2∵800×32%=256(人),

估计该校初三学生选择中技观点的人数约是256人;

3)该班选择就业观点的人数=50×1-60%-32%=50×8%=4(人),则该班有2位女同学和2位男生选择就业观点,

列表如下:

共有12种等可能的结果数,其中出现2女的情况共有2种.

所以恰好选到2位女同学的概率=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.

(1)求女生进球数的平均数、中位数;

(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点(4,3),(3,0).

(1)求b、c的值;

(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象

(3)该函数的图象经过怎样的平移得到y=x2的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,BC=8cmAC=6cm.点PB出发沿BAA运动,速度为每秒1cm,点E是点BP为对称中心的对称点,点P运动的同时,点QA出发沿ACC运动,速度为每秒2cm,当点Q到达顶点C时,PQ同时停止运动,设PQ两点运动时间为t秒.

(1)t为何值时,PQBC

(2)设四边形PQCB的面积为y,求y关于t的函数关系式;

(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;

(4)t为何值时,△AEQ为等腰三角形?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为m2),种草所需费用1(元)与m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+300000≤≤1000).

(1)请直接写出k1k2和b的值;

(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;

(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出yx的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF

(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;

(2)AB=2,AE=2,求∠BAD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD为矩形的四个顶点AB=16cmAD=6cm动点PQ分别从点AC同时出发P3cm/s的速度向点B移动一直到达B为止Q2 cm/s的速度向D移动

(1)PQ两点从出发开始到几秒?四边形PBCQ的面积为33cm2

(2)PQ两点从出发开始到几秒时?点P和点Q的距离是10cm

查看答案和解析>>

同步练习册答案