精英家教网 > 初中数学 > 题目详情

【题目】如图1,抛物线y=ax2+bx﹣2x轴交于点A﹣10),B40)两点,与y轴交于点C,经过点B的直线交y轴于点E02).

1)求该抛物线的解析式;

2)如图2,过点ABE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PAEAEDPD,求四边形EAPD面积的最大值;

3)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标.

【答案】(1)y=x2x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).

【解析】试题分析: 把点代入抛物线,求出的值即可.

先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式表示出,用配方法求出它的最大值,

联立方程求出点的坐标, 最大值=

进而计算四边形EAPD面积的最大值;

分两种情况进行讨论即可.

试题解析:1在抛物线上,

解得

∴抛物线的解析式为

2)过点P轴交AD于点G

∴直线BE的解析式为

ADBE,设直线AD的解析式为 代入,可得

∴直线AD的解析式为

∴当x=1时,PG的值最大,最大值为2

解得

最大值=

ADBE

S四边形APDE最大=SADP最大+

3①如图31中,当时,作T

可得

②如图32中,当,

时,

时,Q3

综上所述,满足条件点点Q坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线(m>0)与x轴的交点为AB

1)求抛物线的顶点坐标;

2)横、纵坐标都是整数的点叫做整点.

m1时,求线段AB上整点的个数;

若抛物线在点AB之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2,AD=6,P为边AD上一点,且AP=2,在对角线BD上寻找一点M,使AM+PM最小,则AM+PM的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9.

1)什么情况下,购会员证与不购证付一样的钱?

2)什么情况下,购会员证比不购证更合算?

3)什么情况下,不购会员证比购证更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等边ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边ADE

1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;

2)如图2,在点D从点B开始移动至点C的过程中,以等边ADE的边ADDE为边作ADEF

ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;

若点MNP分别为AEADDE上动点,直接写出MN+MP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水,应缴水费元.

1)写出之间的关系式;

2)某户居民若5月份用水16吨,应缴水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空:在横线上填写适当的式,数或符号,完整表达解方程的过程

解方程:

解:两边平方,得_____________________________________________

整理,得_____________________________________________________

解这个方程得, ___________________,_____________________

检验:把________分别带入原方程两边,左边=_______________,右边=_________________,由右边__________左边,可知________________

x=_________________分别带入原方程两边,左边=________,左边=_________________右边,可知________________

所以,原方程的根是___________________________

查看答案和解析>>

同步练习册答案