精英家教网 > 初中数学 > 题目详情

【题目】(1)计算

(1﹣)×(1+)=   ,1﹣(2=   有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

(1﹣)×(1+)=   ,1﹣(2=   有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

③猜测(1﹣)(1+)与1﹣(2 有关系:(1﹣)(1+   1﹣(2.(用“=”“<”“>”填空)

(2)计算:[1﹣(2]×[1﹣(2]×[1﹣(2]×…×[1﹣(2]

【答案】(1)、=;、=;=;(2)

【解析】

(1)①根据有理数的运算法则依次计算后即可解答;②根据有理数的运算法则依次计算后即可解答;③类比①②的计算结果即可解答;(2)利用(1)获得的方法,把把中括号内的每一个式子分解后再计算即可求解.

解:(1)(1﹣)×(1+)=,1﹣(2=;有(1﹣)×(1+)=1﹣(2

(1﹣)×(1+)=,1﹣(2=;有(1﹣)×(1+)=1﹣(2

③猜测(1﹣)(1+)与1﹣(2 有关系:(1﹣)(1+)=1﹣(2

故答案为:①、=;、=;=

(2)原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)…(1﹣)×(1+

=

=×

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图△ABC,CE平分∠ACB,CF平分∠ACDEF//BCACM,CM=5,CE2+CF2等于( )

A. 100 B. 75 C. 120 D. 125

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)请你数一数,图中有多少个小于平角的角;

(2)求出∠BOD的度数;

(3)请通过计算说明OE是否平分∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为(  )

A.2 m
B.2 m
C.(2 ﹣2)m
D.(2 ﹣2)m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式:(a×b)2=a2×b2、(a×b)3=a3×b3、(a×b)4=a4×b4

(1)用具体数值验证上述等式是否成立(写出其中一个验证过程)

(2)通过上述验证,猜一猜:(a×b)100=   ,归纳得出:(a×b)n=   

(3)请应用上述性质计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2 , 当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图数轴上A、B、C三点对应的数分别是a、b、7,满足OA=3,BC=1,P为数轴上一动点,点PA出发,沿数轴正方向以每秒1.5个单位长度的速度匀速运动,点Q从点C出发在射线CA上向点A匀速运动,且P、Q两点同时出发.

(1)a、b的值

(2)P运动到线段OB的中点时,点Q运动的位置恰好是线段AB靠近点B的三等分点,求点Q的运动速度

(3)P、Q两点间的距离是6个单位长度时,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABCD,点P为定点,EF分别是ABCD上的动点.

(1)求证:∠P=∠BEP+∠PFD

(2)若点MCD上一点,如图2,∠FMN=∠BEP,且MNPFN.试说明∠EPF与∠PNM的数量关系,并证明你的结论;

(3)移动EF使得∠EPF=90°,如图3,作∠PEG=∠BEP,求∠AEG与∠PFD度数的比值.

查看答案和解析>>

同步练习册答案