精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,PCD边上的一点,APBP分别平分∠DAB和∠CBA

(1)判断△APB是什么三角形,证明你的结论;

(2)比较DPPC的大小;

(3)画出以AB为直径的O,交AD于点E,连接BEAP交于点F,若tanBPC,求tanAFE的值.

【答案】(1)APB是直角三角形,理由见解析;(2)DPPC(3)tanAFE.

【解析】

(1)可通过角的度数来判断三角形APB的形状.由于ABCD是平行四边形,ADBC,那么同旁内角∠DAB和∠CBA的和应该是180°APBP分别平分∠DAB和∠CBA,于是∠PAB和∠ABP的和就应该是90°,即∠APB=90°,因此可得出三角形APB的形状.
(2)可通过平行和角平分线,通过等角对等边得出DPAP,同理可证出PCBC,根据平行四边形的性质,ADBC,可得出DPPC
(3)由AB为圆的直径,根据直径所对的圆周角为直角得到∠AEB=∠APB=90°,又AP为角平分线,根据角平分线定义得到一对角相等,根据两对角相等的两三角形相似,得到三角形AEF与三角形APB相似,进而得到对应角相等,又平行四边形的对边ABDC平行,得到一对内错角相等,等量代换得到∠AFE与∠BPC相等,即可求出所求∠AFE的正切值.

(1)APB是直角三角形,理由如下:

ADBC

∴∠DAB+∠ABC=180°

又∵APBP分别平分∠DAB和∠CBA

∴∠PABDAB,∠PBAABC

∴∠PAB+∠PBA(ABC+∠DAB)

×180°=90°

∴△APB是直角三角形;

(2)DCAB

∴∠BAP=∠DPA

∵∠DAP=∠PAB

∴∠DAP=∠DPA

DADP

同理证得CPCB

DPPC

(3)AB是⊙O直径,

∴∠AEB=∠APB=90°

AP为角平分线,即∠EAF=∠PAB

∴△AEF∽△APB

∴∠AFE=∠ABP

ABCD为平行四边形,∴DCAB

∴∠ABP=∠BPC

tanBPC

tanAFE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(12)如图,已知抛物线yax2+bx2(a≠0)x轴交于AB两点,与y轴交于C点,直线BD交抛物线于点D,并且D(23)B(40)

(1)求抛物线的解析式;

(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点BMC,求△BMC面积的最大值;

(3)(2)中△BMC面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D在O的直径AB的延长线上,点C在O上,AC=CD,ACD=120°.

(1)求证:CD是O的切线;

(2)若O的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰△ABC内接于半径为5O,点O到底边BC的距离为3,则AB的长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,点CBA延长线上一点,CDOD点,弦DECBQAB上一动点,CA1CDO半径的倍.

(1)O的半径R

(2)QAB运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线p: 的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是和y=2x+2,则这条抛物线的解析式为____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.

(1)求二次函数解析式;

(2)连接PO,PC,并将POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;

(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,在上分别找点,使,将绕点顺时针方向旋转,的中点恰好落在的中点,延长,连接.

1)四边形是什么特殊四边形?说明理由.

2)是否存在中,使得图中四边形为菱形?若不存在,说明理由;若存在,求出此时的面积与面积的倍数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点DAB的中点,连接DO并延长交⊙O于点P.

(1)求劣弧PC的长结果保留π);

(2)过点PPFAC于点F,求阴影部分的面积结果保留π).

查看答案和解析>>

同步练习册答案