精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC
(1)求证:BC平分∠PBD;
(2)求证:PC2=PAPB;
(3)若PA=2,PC=2 ,求阴影部分的面积(结果保留π)

【答案】
(1)证明:连接OC,

∵PD切⊙O于点C,

∴OC⊥PD,

∵BD⊥PD,

∴BD∥OC,

∴∠DBC=∠BCO,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠OBC=∠CBD,

∴BC平分∠PBD


(2)证明:连接AC,

∵AB是半圆O的直径,

∴∠ACB=90°,

∴∠ACO+∠BCO=∠ACO+∠ABC=90°,

∵∠PCA+∠ACO=90°,

∴∠ACP=∠ABC,

∵∠P=∠P,

∴△ACP∽△CBP,

∴PC2=PAPB


(3)解:∵PC2=PAPB,PA=2,PC=2

∴PB=6,

∴AB=4,

∴OC=2,PO=4,

∴∠POC=60°,

∴S阴影=SPOC﹣S扇形= 2 ×2﹣ =2 π.


【解析】(1)连接OC,由PD切⊙O于点C,得到OC⊥PD,根据平行线的性质得到∠DBC=∠BCO,根据的预计实现的性质得到∠OCB=∠OBC,等量代换得到∠OBC=∠CBD,于是得到即可;(2)连接AC,由AB是半圆O的直径,得到∠ACB=90°,推出∠ACP=∠ABC,根据相似三角形的性质即可得到结论;(3)根据图形的面积公式即可得到结果.
【考点精析】本题主要考查了角平分线的性质定理和切线的性质定理的相关知识点,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:

(1)﹣0.5﹣(﹣3 )+2.75﹣(+7

(2)(+×(﹣12)

(3)(﹣2)3÷ ×2

(4)﹣12×[2﹣(﹣4)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=﹣ x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣ (x﹣ 2+4上,能使△ABP为等腰三角形的点P的个数有( )
A.3个
B.4个
C.5个
D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或化简:
(1)计算:21+ cos30°+|﹣5|﹣(π﹣2017)0
(2)化简:(x﹣5+ )÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:
(1)△AEH≌△CGF;
(2)四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.

(1)求出a,b的值;

(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.

①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?

②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,MAB的中点,NAC的中点.

(1)求线段CM的长;

(2)求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两地相距200km快车速度为120 ,慢车速度为80 ,慢车从甲地出发,快车从乙地出发,

1)如果两车同时出发,相向而行,出发后几时两车相遇?相遇时离甲地多远?

2)如果两车同时出发,同向(从乙开始向甲方向)而行,出发后几时两车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由AB运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).

(1)求t=1时点P表示的有理数;

(2)求点P与点B重合时的t值;

(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);

(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.

查看答案和解析>>

同步练习册答案